Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностная внутренняя энергия

    При исследовании влияния температуры на поверхностное натяжение жидкостей были получены данные, представленные в таблице 1.4 (1—вода, 2—метанол, 3 — этанол, 4—бутанол, 5—анилин, 6 — нитробензол, 7 — хлорбензол, 8—гексан). Определить внутреннюю энергию и энтропию поверхностного слоя. Какие выводы следуют из линейного характера зависимости а = /(Т) и отрицательного знака температурного коэффициента поверхностного натяжения  [c.22]


    Из уравнения (И.19) следует, что внутренняя энергия иоверх-ности складывается из энергии Гиббса и теплоты образования поверхности. Для индивидуальных веществ теплота Qs всегда положительна, так как при образовании поверхности теплота поглощается. В результате внутренняя поверхностная энергия единицы поверхности больше поверхностной энергии Гиббса на теплоту образования единицы поверхности. Поэтому ее обычно называют полной поверхностной энергией. [c.27]

    При линейном изменении поверхностного натяжения с температурой внутренняя энергия поверхностного слоя, как следует из [c.17]

    Величину Г мы будем называть в дальнейшем просто величиной адсобрции. Отметим, что под этим термином понимается именно гиббсовский избыток, а не полное количество адсорбата в адсорбционном слое . Для определения полного количества адсорбата в адсорбционном слое надо знать толщину этого слоя и распределение в нем концентрации адсорбата или сделать какие-либо допущения об этом (см. гл. IV). Гиббсовские определения величин адсорбции и других поверхностных термодинамических величин, отнесенных к единице площади поверхности (индекс з внизу), — свободной поверхностной энергии, поверхностной энтропии 55, поверхностной внутренней энергии 11 и поверхностной теплоемкости свободны от каких-либо допущений о толщине адсорбционного слоя. [c.106]

    Адсорбат оказывает заметное влияние на поверхность адсорбента неоднородность и дефекты поверхности обратимо перераспределяются, в частности под влиянием адсорбированных молекул изменяется энергия центров адсорбции. С другой стороны, под воздействием адсорбента меняются энтропия и внутренняя энергия адсорбированных молекул. Известно также, что несколько первых слоев кристаллической поверхности твердого тела имеют искаженную структуру. В присутствии адсорбата степень нарушения структуры поверхностного слоя меняется, причем этот процесс не обязательно сопровождается массовым переносом атомов твердого тела. [c.183]

    Поверхности раздела фаз образуются некоторым количеством молекул, расположенных на границе области, заполненной данной фазой. Молекулы, образующие поверхностный слой, находятся в особых условиях, вследствие чего поверхностный слой обладает свойствами (например, избыточной внутренней энергией), не присущими веществу, находящемуся в глубине фазы. Образования, составленные из небольшого числа молекул, не могут быть разделены на поверхностный слой и внутреннюю массу вещества, поэтому к образованиям с очень малым объемом понятие фаза неприложимо. [c.348]


    Общим условием равновесия любой замкнутой системы при постоянных значениях общей энтропии, общего объема и общего количества каждого из компонентов является минимум ее внутренней энергии. Поэтому для равновесия замкнутой системы, состоящей из двух объемных фаз (1 и 11) и поверхностного слоя между ними, должно соблюдаться условие  [c.459]

    Изменения внутренней энергии соприкасающихся с поверхностным слоем объемных фаз I и И могут быть записаны согласно уравнению (V, 4) на стр. 170 так  [c.460]

    Изменение поля молекулярных сил, происходящее в неоднородном поверхностном слое между объемными фазами I и И, приводит к отличию величин энергии, энтропии и чисел молей компонентов этого слоя (в объемах и з-") от соответствующих величин внутри соседних фаз I (в объеме, равном з- ) и И (в объеме, равном 5-")- Поэтому удобно говорить не о всей внутренней энергии или энтропии поверхностного слоя и не о всем количестве каждого компонента I в этом слое, но лишь об избытках энергии, энтропии и чисел молей компонентов I в объеме поверхностного слоя над соответствующими величинами энергии, энтропии и чисел молей компонентов I в соответствующих объемах внутри фаз I и П, т. е. в объеме, равном х з в фазе I, и в объеме, равном - "5 в фазе П. Именно эти избытки энергии, энтропии и чисел молей компонентов характеризуют отличие поверхностного слоя от объемных фаз. Эти избытки могут быть как положительными, так и отрицательными. Например, компонент 1 может находиться преимущественно у поверхности раздела 5 (положительный избыток), а компонент 2 может находиться в объеме поверхностного слоя в меньшем количестве, чем в равном объеме фаз 1 или И (отрицательный избыток). [c.462]

    Обозначив эти избытки внутренней энергии, энтропии и чисел молей компонентов I через 5 " и п , можно выразить их через разности всей энергии, энтропии и чисел молей компонентов / поверхностного слоя тз и соответствующих величин в объемах т з и внутри объемных фаз I и И  [c.462]

    Левая часть равенства (3.13) представляет собой приращение внутренней энергии тела. Приращение поверхностной энергии имеет знак плюс, так как на эту величину увеличилась внутренняя энергия тела. Приращение потенциальной энергии деформации имеет знак минус, так как эта доля внутренней энергии выделяется телом (вследствие релаксации напряжений в связи с появлением новых, свободных от нагрузок, поверхностей тела). Тогда условие [c.180]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    Примем гипотезу локальной однородности фаз. Это значит, что в любом элементарном объеме смеси вещество каждой фазы (представляющее гомогенный /1-компонентный раствор) принимается однородным вплоть до самой поверхности раздела фаз, и поэтому энергия фазы считается пропорциональной ее массе. Особенности поверхностного слоя вещества толщиной порядка радиуса молекулярного взаимодействия, являющегося границей раздела фаз, в условиях этой гипотезы учитываться не будут. Последнее справедливо, когда размеры включений, составляющих дисперсную фазу, много больше толщины слоя границы раздела фаз. В принятых предположениях внутренняя энергия единицы объема смеси является аддитивной по массе фаз  [c.40]

    Проведем анализ энергетических переходов при фазовых пре-врашениях. Введем поверхностную составляющую внутренней энергии смеси, учитывающую поверхностный эффект (по Гиббсу), тогда [c.22]

    Выведем уравнения притока тепла. Введем поверхностную составляющую внутренней энергии смеси и . Тогда соотношение для всей внутренней энергии смеси будет иметь вид [c.35]


    НИИ внутренней энергии в дисперсной фазе при расколе проведем ряд рассуждений. Возьмем какой-нибудь кристалл и обозначим его энергию (внутреннюю и поверхностную) через . Разделим мысленно кристалл какой-либо плоскостью на две части и обозначим через 1 энергию первой части, через — второй части. Тогда можно написать [c.56]

    Необходимо отметить, что уравнения, по которому можно определить 8, нет, хотя 8 входит в некоторые из приведенных уравнений. Принято считать б" экстенсивным (зависящим от размера системы) коэффициентом уравнения внутренней энергии. В адсорбционных процессах, где главную роль играет поверхностная энергия, с помощью энергетического баланса, который определяется теплотой адсорбции и теплотой десорбции, можно учитывать с. Пренебрежение величиной с упрощает математические расчеты. [c.19]

    Полная энергия любого кристалла кварца (или его обломка) представляет сумму внутренней энергии, необходимой для образования атомной решетки, и поверхностной энергии, затрачиваемой на удержание частиц поверхностного слоя в равновесии. При смачивании зерен среды водой выделяется избыток свободной энергии, необходимой для создания поверхностного слоя на границе кварц—вода. Так если 111 — полная энергия кристалла кварца с площадью поверхности 5, а — полная энергия второй фазы (воды), то полная энергия всей системы и = и] + и2 + о5. [c.208]

    Фактором интенсивности поверхностной энергии является поверхностное натяжение, обусловленное нескомпенсированным полем межмолекулярных сил на межфазной поверхности. Термодинамическое определение поверхностного натяжения вытекает из объединенного уравнения первого и второго начал термодинамики. Запишем его для гетерогенной системы относительно изменения внутренней энергии 7  [c.22]

    T. e. поверхностное натяжение есть частная производная от внутренней энергии по площади поверхности раздела фаз при постоянных энтропии, объеме, числе молей компонентов и заряде. [c.22]

    Зная температурный коэффициент поверхностного натяжения, легко подсчитать по уравнению (11.21) полную (внутреннюю) энергию той или иной межфазной поверхности. Например, на границе с воздухом для воды прп 298 К  [c.28]

    Методом молекулярной динамики исследовалась диффузия полимерной цепи в 10%-ном растворе на ансамбле из 1000 частиц, которые взаимодействуют между собой согласно потенциалу Леннарда-Джонса. Все частицы, включая цепь, первоначально находятся в узлах гексагональной кристаалической решетки с ребром а. Исследуемый объем представляет собой куб размером ЮдхЮахЮа со стандартными периодическими граничными условиями, позволяющими избежать влияния поверхностных эффектов. Кристаллу сообщается внутренняя энергия, характерная для жидкости несколько выше температуры замерзания. Для этого каждой частице приписывается случайное значение скорости, величина и направление которой определяется распределе шем Максвелла и условием неподвижности центра масс исследуемого объема. [c.104]

    Цель работы — проверка температурной инвариантности внутренней энергии поверхностного слоя чистых жидкостей в диапазоне температур 20—60 °С. [c.34]

    Для определения внутренней энергии поверхностного слоя измеряют поверхностное натяжение жидкости в заданном интервале температур. Величину о рекомендуется определять по высоте капиллярного поднятия. В работе следует применять термостат, в [c.34]

    По экспериментальным данным строят график зависимости о=/(7 ) и определяют температурный коэффициент поверхностного натяжения р. Внутреннюю энергию рассчитывают по формуле [c.35]

    Аналогично методом Гиббса определяют все экстенсивные термодинамические функции поверхностного слоя — внутреннюю энергию, свободную энергию, энтропию поверхностного слоя  [c.10]

    Гиббсом были получены не только условия равновесия объемных фаз при наличии поверхностей раздела, но и основные (фундаментальные, как он их назвал) уравнения,. связывающие между собою в дифференциальной форме поверхностные термодинамические параметры. Для внутренней энергии объемной фазы справедливо фундаментальное уравнение йи = = Тс18—рсг1/+2м.1(1/гг. Аналогичное фундаментальное уравнение для поверхностной внутренней энергии в случае плоской поверхности имеет вид  [c.142]

    Аи — изменение внутренней энергии при адсорбции газа ДС/я — пзмененпе поверхностной внутренней энергии при адсорбции газа, отнесенное к единице площади поверхности д77 — дифференциальное мольное изменение внутренней энергии адсорбата при адсорбщш газа [c.375]

    Поверхность раздела не изменяется. Примем сначала, что положение поверхности з фиксировано, так чтос и =йу = 0. В этом случае внутренняя энергия поверхностного слоя и, как и для объемных фаз, зависит от энтропии 5 этого слоя и количества образующих его компонентов п,-  [c.460]

    В соответствии с уравнениями (XVII. 2) и (XVII, 3) эти изменения объема вызовут дополнительные к записанным в формуле (XVII. 5) изменения внутренних энергий фаз I и II на величины —Р йь и —Р"йь". Общее изменение энергии, связанное со смещением поверхности 5, при равновесии равно нулю, поэтому условие механического равновесия системы, состоящей из двух фаз (I и II) и поверхностного слоя между ними, будет следующее  [c.463]

    Влияние числа Маха. При очень высоких скоростях течения, сравнимых со скоростью звука, в уравнении внутренней энергии (126) уже нелу,зя пренсбрегат , слагаемыми, описывающими эффекты сжимаемости и диссипацию. В этом случае даже при равенстве внешней температуры и температуры стенки будет существовать теплообмен, обусловленный выделением теплоты при вязком трении (дис-сипация)> Коэффициент поверхностного трения при Т ш,= = -Г. [c.115]

    Данные табл. И. 4 подтверждают сказанное. Если сравнить внутреннюю (полную) поверхностную энергию жидкостей, молекулы которых имеют углеводородные радикалы и разные функциональные группы, то обращает на себя внимание тот факт, что все они имеют близкие значения этой энергии, колеблющиеся около значения 50-10- Дж/м Это объясняется тем, что их поверхности имеют одинаковую природу, определяемую углеводородным радикалом. Для обеспечения минимальной поверхностной энергии молекулы на поверхности ориентируются таким образом, что радикалы находятся на поверхности, а функциональная группа внутри фазы. Ориентирование поверхностных молекул, безусловно, снижает энтропийную составляющую внутренней энергии поверхностного слоя, так как обеспечивает определенную унорядоченность [c.31]

    Как было указано вьине, в результате адсорбции происходит перераспределение компонентов между объемными фазами и поверхностным слоем, что влечет за собой изменение их химических потенциалов в системе, поэтому этот процесс можно рассматривать как превращение поверхностной энергии в химическую. Выведем соотношение между иоверхиостР ым натяжением и химическими потенциалами компонентов системы. Объединенное уравнение первого и второго начал термодинамики для внутренней энергии поверхности с учетом поверхностной и химической энергии имеет вид (объем поверхности равен нулю) [c.35]

    Поверхностную энергию а в уравнении (П. 41) можно рассматривать как избыточную механическую энергию (внутреннего давления), Из уравнеиня (11.44) можно выразить поверхностное уплотнение энергии Гиббса, или удельную поверхностную энергию Гиббса. В приближении равенства энергии Гиббса и энергии Гельмгольца для конденсированных систем имеем  [c.37]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    Образование новой фазы должно начинаться с появления устойчивых зародышей, размер которых превышает критический Гкр. Когда зародыш очень мал, то значительная доля его молекул находится на поверхности. В этом случае новая фаза имеет высокое отношение поверхности к объему. Молекулы, расположенные на поверхности, обладают большим запасом внутренней энергии, чем молекулы в объеме. Поэтому из-за высокой поверхностной энергии такой зародыш неустойчив. И лишь последующее увеличение размеров зародышей выше Гкр дела- ет их устойчивыми, они становят- ся центрами кристаллизации. ь [c.219]


Смотреть страницы где упоминается термин Поверхностная внутренняя энергия: [c.131]    [c.142]    [c.310]    [c.375]    [c.375]    [c.310]    [c.248]    [c.459]    [c.22]    [c.37]    [c.110]    [c.264]    [c.269]    [c.9]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностная энергия

Энергия внутренняя



© 2024 chem21.info Реклама на сайте