Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

природа растворителя

    Влияние температуры и природы растворителя на растворимость [c.82]

    На основе гидродинамической теории можно рассчитать радиусы мигрирующих иоиов поскольку ири этом используется уравнение Стокса (5.4), они называются стоксовыми радиусами. Стоксо-выс радиусы обычно заметно больше кристаллохимических, иными словами, мигрируют гидратированные ионы. Из уравнения (5.9), вытекающего из гидродинамической теории, можно получить эмпирическое правило Вальдена — Писаржевского, если допустить, что прн изменении температуры или природы растворителя размеры ионов (стоксовы радиусы) остаются постоянными. Обычно это условие не выполняется, чем и объясняется приближенный характер правила Вальдена — Писаржевского. [c.120]


    В смешанных растворителях данные не вполне однозначны. Для металлов с низким перенапряжением природа растворителя играет меньшую роль. Характер изменения перенапряжения с изменением растворителя точно не установлен, хотя в литературе имеются указания на то, что для меди и никеля в спиртовых растворах оно выше, чем в водных. Влияние pH раствора на перенапряжение водорода с наибольшей полнотой изу- [c.400]

    Относительная Точный порядок и величина влияния скорость природы нуклеофильных реагентов будут зависеть в известной степени от 228 природы растворителя, характера за- [c.480]

    Соотношение цис- и транс-изомеров в продуктах гидрирования зависит от строения алкильных групп в исходной молекуле, их положения относительно друг друга и двойной связи, от природы катализатора, давления водорода, а если гидрирование проходит в жидкой фазе, то и от природы растворителя и pH среды. Возможность оценить соотношение продуктов цис- и транс-присоединений водорода к циклоалкенам дает надежду более детально разобраться в механизме гидрирования. Эта реакция является одним из наиболее типичных примеров использования стереохимического подхода для более глубокого изучения механизма гетерогенно-каталитиче-ских реакций. [c.21]

    Связь электропроводности со свойствами электролитов и природой растворителя [c.110]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Значение Ка при правильном выборе стандартного состояния компонента в различных растворителях не зависит от природы растворителя также не зависят от нее и величины а, ас- Поэтому в уравнении (б) не зависит от природы [c.287]

    Необходимо отметить, что растворимость парафина в углеводородных растворителях в значительной мере зависит также и от химической природы растворителя. При этом в алканах в нафтенах парафины растворяются лучше, чем в ароматических углеводородах. [c.83]


    Упомянутые промышленные растворители настолько близки между собой по избирательности, что природа растворителя лишь мало влияет [c.194]

    В первой строчке дана идеальная растворимость газа, не зависящая от природы растворителя она вычисляется по уравнению (VII, 4). Так, на- [c.224]

    Из гидроперекисей углеводородов получила наибольшее распространение гидроперекись изопропилбензола (кумола). Термическое разложение гидроперекиси кумола происходит, в зависимости от природы растворителя, при 70—130 °С с образованием двух радикалов  [c.135]

    Влияние природы растворителя на микроструктуру полиизопрена [c.210]

    Эта закономерность близка к указанной выше (см. стр. 438), но там устанавливалась независимость произведения от температуры в одном растворителе, а здесь —от природы растворителя при постоянной температуре. [c.441]

    Скорость термического распада перекиси зависит от природы растворителя. Наибольшая скорость наблюдается в растворе ТГФ, где за 1 ч при 70 °С разлагается, практически, вся перекись. Значительно ниже скорость распада в диметилформамиде (ДМФ) (33% за 1 ч) и еще ниже в ацетоне (15%)- Термический распад перекиси протекает согласно уравнению первого порядка. Отсутствует зависимость скорости разложения перекиси от начальной концентрации ее в растворителе. Ниже приведены константы скорости рас- [c.424]

    Из уравнения (УИ, 4) вытекает, что идеальная растворимость газа ке зависит от природы растворителя. Ее зависимость от давления выражается графически прямой линией. [c.223]

    Метод Гамметта чрезвычайно прост. Поэтому он нашел широкое применение, несмотря на сравнительно малую точность. Следует учитывать, что, с одной стороны, функции диссоциации оснований все же несколько зависят от природы растворителя с другой стороны, индикаторный метод имеет ряд ограничений, а именно окраска индикатора и ее интенсивность зависят не только от pH раствора, но и от присутствия окислителей или восстановителей, от ионной силы раствора, от наличия в растворе белков (белковая ошибка). Уже само введение индикатора влияет на значение pH. При больших [c.498]

    Однако растворимость многих осадков, например таких, которые содержат анионы некоторых органических кислот (диметил-глиоксимат никеля, оксихинолинат алюминия и др.), в органических растворителях гораздо выше, чем в воде. Поэтому в количественном анализе всегда следует учитывать влияние на растворимость осадков температуры и природы растворителя. [c.84]

    Скачки потенциала между точками а и Ь я д п г следует от[1ести к поверхностным потенциалам между металлом М и вакуумом V их можно обозначать соответственно через у.ум, Хм V- Естественно, что у V м V Скачок потенциала между точками с и расположенными в металлических фазах. Нг и М1, представляет собой разность соответствующих внутренних потенциалов — Ям,.м2. Точки е—/ и п—р — это места, где локализуются разности внутренних потенциалов металл 1—раствор 1 и раствор 2 — металл 2 их следует записывать соответственно й м,д, и (потенциалы ьм часто называют также нерпстовскнми и обозначают, как и электродный потенииал, буквой < , хотя в действительности физический смысл их иной). Разность потенциалов между точками а я В представляет собой вольта-потенциал между металлами М, и Мг, т. е. величину Км,,м а разность потенциалов в точках В и С является вольта-потенциалом между металлом М и раствором Ь],т. е. Км,,ь,-Наконец, скачок потенциала между точками I и т является гальвани-потенциалом между растворами Ь и Ьг и записывается как Здесь следует различать два случая. Если растворы Ь] и Ег отвечают двум несмешивающимся растворителям, то будет гальвани-потенциалом между двумя жидкостями или фазо-вы.м жидкостным потенциалом. Если же растворы Ь) и Ьг отличаются друг от друга природой или концептрацией электролита, но не природой растворителя, то этот потенциал будет диффузионным потенциалом его обозначают обычно как [c.31]

    Из теории Нернста следует вывод о независимости стандартных электродных потенциалов от природы растворителя, поскольку величина Р, определяющая нормальный, или стандартный, потенциал электрода, не является функцией свойств растворителя, а зависит липJь от свойств металла. Одиако ни опыт, ни теоретические соображения не согласуются с подобного рода представлениями, что также приводит к необходимости пересмотра физических предпосылок теории Нернста. [c.220]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]


    Уравнеине (10.25) может служить основой для выяснения влияния природы растворителя на э. д. с. электрохимических систем и на электродные потенциалы. [c.224]

    Уравнения (10.30) и (10.32) следуе рассматривать как математическое выражение основных положений гидратациониой (сольватационной) теории электродвижущих сил и электродных иотенциа-лов. Э.д.с. и стандартный электродный потенциал иредставлены здесь в виде суммы двух слагаемых. Первое из них определяется свойствами электродов, второе — свойствами потенциалопределяю-щих ионов и природой растворителя. [c.225]

    Уравнения (10.30) и (10.32) можно использовать для решения многих важных проблем, относяи ихся к равновесным электрохимическим системам. При помощи уравнения (10.30), например, можно объяснить зависимость э. д. с. электрохимической системы (11) от свойств растворителя. В этом случае первое слагаемое уравнений (10.30) и (10.32) остается постоянным, и изменение э. д. с. с природой растворителя определяется вторым слагаемым. Следовательно, уравнения (10.30) и (10.32) можно переписать в виде [c.226]

    Совпадение уравнений (11.65) и (11.73), полученных с использованием различных исходных величин, вряд ли может рассматриваться как случайность. Из табл, 11.5 следует, что расхождение между расчетными и опытными значениями нулевых точек лежит в пределах ошибок экспериментального определения S и ы Независимость разностей нулег.ых точек от природы растворителя наблюдается для водных растворов и расплавов солей, в то же время этот вывод не находит полного подтверждения при сопротивлении ряда водных и неводных (органических сред). Точно так же некоторые металлы, папример галлий, резко выпадают из общей закономерности. Такой резул],тат представляется естественным, поскольку расчетные уравнения были выведены на основе упрощающих допущений и отвечают, в лучшем случае, лищь первому приближению теории нулевых точек, не учитывающему многие усложняющие факторы. Одним из наиболее важных факторов является различная адсорбируемость воды (или другого растворителя) на разных металлах, т. е. различная гидрофильность металлов. Это приводит к тому, что в нулевой точке на поверхности разных металлов образуются в неодинаковой степени ориентированные слои молекул воды, создающие добавочный скачок потенциала и смещающие положение нулевой точки. Помимо эффекта такой ориентированной адсорбции воды, подробно рассмотренного Фрумкиным и Дамаскииым, следует, по-вндимому, считаться и с более глу- [c.258]

    Рас гворимость. Растворимость вещества зависит как от его при-p t bi, гак и от природы растворителя. [c.127]

    Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (точнее активностей) окисленной и 1Юсстановленной форм вещества, а также от температуры, природы растворителя, pH среды и др. [c.222]

    При малой кратности растворителя к сырью вязкость раствора снижается недостаточно, что ведет к образованию дополнительных центров кристаллизации и, следовательно, образованию мелких груднофильтруемых кристаллов. С другой стороны, чрезмерное разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. В результате этого средняя длина диф — фузионного пути кристаллизующихся молекул увеличивается настолько, что даже при медленном охлаждении они не успевают достигнуть поверхности первичных зародышей, что вызывает возникновение большого количества мелкодисперсных кристаллов па — рафинов. Оптимальная величина кратности растворителя зависит от фракционного и химического состава сырья, его вязкости, химической природы растворителя и требований к качеству депарафи — низатов. При этом следует учесть то обстоятельство, что с увеличением кратности растворителя повышаются эксплуатационные. затраты. Очевидно, что с повышением вязкости сырья и глубины депарафинизации требуемая кратность растворителя будет возрастать. [c.258]

    Разработаны и внедрены различные варианты карбамидной депарафинизации, различающиеся по агрегатному состоянию при — меняемого карбамида, природу растворителя и активатора, оформлению реакторного блока, способу отделения и разложения комплекса, каждый из которых имеет свои преимущества и недостатки. [c.272]

    В зависимости от коэффициентов растворимости и концентрации компонентов в свободном газе изл1еняется и состав растворенного газа. Так, например, содержание кислорода в растворенном воздухе составляет при невысоких температурах 33—34%, поскольку коэффициент растворимости для кислорода примерно в 2 раза больше, чем для азота. Коэффициент растворимости данного газа зависит от природы растворителя. [c.236]

    Кинетика процесса иногда зависит от природы растворителя. В некоторых случаях данный эффект обусловлен влиянием растворителя на термодинамическую активность реагентов. Сольва-тнрующая способность и диэлектрическая константа являются весьма существенными свойствами веществ. [c.83]

    Из органических перекисей широко известна перекись бензоила. Механизм ее разложения весьма сложен и зависит от ряда факторов природы растворителя, наличия примесей и др. Эффек тивность производных перекиси бензоила как инициаторов полимеризации определяется их природой. Нуклеофильные замести-т лй в бензольном кольце увеличивают ее электронную плотиосхь, понижают устойчивость и тем самым повышают скорость полимеризации. Электрофильные заместители приводят к противоположному действию. [c.135]

    Особое внимание Меншуткин уделил вопросу о влиянии растворителя на скорость реакции. Он установил два факта во-первых, эти реакции сказались кинетически бимолекулярными, как это и следует из стехиометрического уравнения во-вторых, скорость каждой данной реакции в значительной мере зависит от химической природы растворителя. Применение к реакциям Меншуткина теории столкновений сразу позволило установить чрезвычайно интересный факт только небольшая доля актив ных столкновений приводит к реакции. В качестве примера рас считаем эффективный диаметр столкновения для реакции вза имодейстБИя триэтиламина с бромэтаиом в растворе ацетона Экспериментально для этой реакции получено следующее зиа чение константы скорости = 8,5 л1моль - сек. Отсюда [c.188]

    Здесь т — мольно-массовая концентрация (моляльность) Е и /< — эбуллиоскопическая и криоскопическая по-стояиные, зависящие только от природы растворителя, но не зависящие от природы растворенного вещества. Для воды криоскопц-ческая постоянная К равна 1,86, эбуллиоскопическая постоянная Е равна 0,52. Для бензола К 5,07, Е = 2,6. [c.230]


Смотреть страницы где упоминается термин природа растворителя: [c.56]    [c.71]    [c.94]    [c.222]    [c.222]    [c.257]    [c.435]    [c.131]    [c.238]    [c.302]    [c.470]    [c.231]    [c.287]    [c.538]   
Физикохимия полимеров (1968) -- [ c.416 ]




ПОИСК







© 2025 chem21.info Реклама на сайте