Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонилы металлов природа связи

    В присутствии карбонилов металлов реакции гидрирования и гидроформилирования двойных связей очень часто идут параллельно. При этом соотношение скоростей этих реакций зависит от природы двойной связи, условий реакции и свойств карбонила металла, употребленного в качестве катализатора. [c.17]

    Никакой корреляции между средней длиной связи Мп — С(со) и составом соединения обнаружить не удается. Зато довольно четко выявляется зависимость расстояния металл — карбонил от природы транс-партнера карбонильной группы. Так же, как и в соединениях хрома (см. таблицу 4), в большинстве соединений марганца длина связи Мп — С по координате ОС — Мп — СО больше, чем по координате Ид — Мп — СО (где Ид = Н, Вг, С, 5п, Ре). Разница в расстояниях в среднем составляет 0,05— [c.22]


    Все смешанные карбонилы металлов имеют некоторые общие свойства. Они, как правило, растворимы в органических растворителях. Некоторые из этих соединений характеризуются четкой и определенной температурой плавления, тогда как другие могут возгоняться. Другими словами, эти свойства по существу — свойства соединений с ковалентными связями. Если считать, что смешанный карбонил металла образован двумя атомами различных переходных металлов (тип А), причем около каждого из них имеется несколько лигандов, количество и природа которых неизвестны, [c.200]

    Смешанные оловоорганические производные карбонила кобальта, у которых два различных переходных металла связаны с атомом олова, например (ОС)бМп—Зп(НВ )-Со(СО)4 и другие [664], представляют собой кристаллические, большей частью окрашенные вещества с четкими температурами плавления. Изучалась природа связей у этих комплексов для некоторых из них приведены длины связей металл—металл, а также величины химических сдвигов [649, 664, 688]. [c.50]

    Это наиболее важный и самый распространенный тип. реакций карбонилов. Вместо СО в карбонил может внедриться молекула, обладающая донорными и в той или иной степени акцепторными свойствами, например РХз, PR3, P(ORs), SR2, NR3, OR2, RN и т. д. Это может быть та.к.же. молекула ненасыщенного органического соединения, такого, как бензол или циклогептатриен. Замещение лигандов СО идет до разных степеней окисления металла, кроме того, степень окисления может оставаться и неизменной [1, 8, 65]. Однако до полного вытеснения СО эти процессы, как правило, не доходят, так как внедрение новых лигандов приводит к резкому усилению связи металл — углерод [66, 67]. Поэтому степень замещения будет определяться не только сродством металла К присоединенному лиганду, но и этой стабилизацией. Как указывает Дж. Чатт и др. [1], стабилизация возникает из-за различной природы СО и вводимых лигандов. Последние являются донорами электронов, в то время как лиганды СО обладают электроноакцепторными свойствами, обусловливающими обратную донорность , на которой Мы останавливались выше. [c.32]

    Карбонилы металлов — комплексы металлов с оксидом углерода (II), которые по природе связи металл — I близки к л-комплексам. Атомы металла, будучи в нулевой степени окисления, ковалентно связаны с атомом углерода лиганда. В одноядерных карбонилах, содержащих один атом металла, все атомы — металл, углерод и кислород — располагаются на одной прямой. В полиядерных карбонилах СО может быть концевым, или терминальным, а также одновременно связанным с двумя атомами металла (мостиковые фуппы СО). Примером поли-ядерного карбонила является эннеакарбонил железа Рв2(СО)д [c.139]


    В реакциях, катализируемых ферментами, скорость представляет собой не менее важный фактор, чем условия равновесия. Рассмотрение избирательности действия ионов металлов в биологических системах было бы неполным без указания на то, что ионы металлов могут изменять природу активированных комплексов и таким образом влиять на скорость реакций. Простым примером может служить катализируемый щелочью гидролиз этилового эфира глицина. Как видно из табл. 20. скорость гидролиза протонизированной формы этого эфира приблизительно в 40 раз выше скорости гидролиза незаряженной формы. Такое различие согласуется с ожидаемым электростатическим влия нием положительного заряда на азоте на отрицательно заряжен ную гидроксильную группу, атакующую углерод карбонила (ср с микроконстантами глицина, рассмотренвыми в разд. 4 гл. IV) Комплекс эфира с медью (в отношении 1 1) гидролизуется однако, еще в 3000 раз быстрее, чем протонизированный эфир, что ясно показывает, к какому эффекту приводит образование металлом хелатной связи с кислородом карбонильной группы. Подобные реакции, скорость которых очень сильно возрастает при внесении положительного заряда в такую часть молекулы, где вероятность нахождения протона очень мала, относят к классу реакций, называемых суперкислотным катализом. В нейтральных и щелочных растворах ион металла часто выполняет функции, аналогичные функциям протона в кислых растворах. [c.409]

    С 1951 г., и по сей день исследования в области металлоорга-нической химии переходных металлов развивались все ускоряющимися темпами. В 1951 г. Оргел, Полинг и Цейсс [44] предложили объяснение природы связи металл — карбонил их концепция была прототипом концепции обратного я-связывания. 1951 г. был ознаменован и еще одним этапным событием — независимым открытием ферроцена двумя группами исследователей— группой Кили и Посона и группой Миллера [45] последний предложил структуру ферроцена с о-связями. В следующем году Уилкинсон, Розенблюм и Вудвард [46] предложили правильную структуру ферроцена с я-связями. В том же году Э. Фишер [47] и Дж. Уилкинсон [48] независимо сообщили об изоэлектронном катионном соединении кобальта (П1). Открытие этих новых сэндвичевых структур и их реакций электрофиль-ного замещения, сходных с реакциями бензола (особенно это касается ферроцена), послужило мощным стимулом научных исследований в этой области в значительной мере этот интерес [c.21]

    В предыдущих разделах были высказаны некоторые идеи о природе промежуточных соединений и механизме гомогенных реакций, катализируемых карболилами металлов. Почти не имеется сомнений в том, что эти реакции подобны гетерогенным реакциям, протекающим на металлических поверхностях. Точно так же как теория иона карбония, разработанная при изучении гомогенных органических реакций, оказалась полезной при выяснении механизма каталитического крекинга, дальнейшее изучение реакций, катализируемых карбонилами металлов, должно помочь вскрыть механизм гетерогенного катализа с участием металлов, образующих карбонилы. Однако и в настоящее время имеются достаточные предпосылки, дающие право сделать некоторые замечания по поводу связи между катализом растворенными карбонилами и металлическими поверхностями эти замечания следующие  [c.682]

    Представление об органических катионах указанного выше типа появились в начале XX века в результате исследований производных трифенилметана [П41]. При измерении электропроводности растворов трифенилметилгалогенидов в жидком сернистом ангидриде [581, 1037, 1038] было обнаружено, что они ведут себя как ионные соединения в прямом смысле этого слова, и солеобразный характер этих проводящих растворенных веществ был от-мечен Гомбергом [580, 581]. Электропроводность растворов три-у фенил у1етилгалогснидов может быть также измерена и в других растворителях, таких, как бензонитрил [581], пиридин [627] или синильная кислота [583]. Все эти проводящие ток растворы i-ч окрашены в желтый цвет, хотя вещества в чистом виде бесцветны, чг Замечено также, что аналогичная окраска появляется при рас-творении трифенилметанола [769] или трифенилметилхлорида [769, 954] в серной кислоте или при реакции трифенилметилхлорида с галогенидами металлов типа хлористого алюминия или другими катализаторами Фриделя—Крафтса [580, 954]. Байер с сотрудниками еще в начале своих исследований природы этих окрашенных ( галохромных ) растворов предположил, что появление окраски может быть объяснено образованием соли. Для частного случая раствора трифенилметанола в серной кислоте была постулирована структура бисульфата карбония со связью, отличной от нормальной карбониевой связи между остатком трифенилметила и бисульфатной группой [35], как это вначале было представлено в формуле 1.15 (это была одна из первых попыток графически отразить различие между ионной и ковалентной связью)  [c.17]



Смотреть страницы где упоминается термин Карбонилы металлов природа связи: [c.84]    [c.17]    [c.178]   
Современная неорганическая химия Часть 3 (1969) -- [ c.3 , c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонилы металлов

Природа связей в металлах

Связи в металлах

Связь природа

природа связе



© 2025 chem21.info Реклама на сайте