Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам сульфиды

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]


    Сланцевое Вольфрам- сульфид Вольфрам- Молибдат [c.283]

    Каталитической активностью в отношении таких реакций обладают переходные металлы (с незаполненными d— или f — оболе чками) первой подгруппы (Си, Ад) и восьмой группы (Fe, Ni, Со, Pt, Pd) периодической системы Д.И. Менделеева, их окислы и сульфиды, их смеси (молибдаты никеля, кобальта, ванадаты, вольфрам аты, хроматы), а также карбонилы металлов и др. [c.81]

    Детальное исследование системы никель — вольфрам — сульфид [26] показало, что взаимодействие между никелем и матрицей 52 имеет значительное влияние на каталитическую активность. Это наводит на мысль, что сложные сульфиды необходимо более интенсивно изучать с точки зрения их влияния на катализ, особенно ввиду возрастающего интереса к этим веществам [27—29]. [c.119]

    Подробные результаты исследования сульфидных катализаторов опубликованы чехословацкими учеными [891. Изучив гидрирование альдегидов оксосинтеза на сульфиде вольфрама, никель-молибден сульфиде и никель-вольфрам сульфиде, они пришли к выводу, что использование таких контактов для гидрирования продуктов карбонилирования в спирты нецелесообразно, так как при этом не может быть достигнута глубокая конверсия в сочетании с высокой селективностью процесса. [c.11]

    Влияние размера зерна катализатора на стадии предварительного гидрирования среднего каменноугольного масла представлено на рис. 5 [64], где показана зависимость степени гидрирования (оцениваемой анилиновой точкой) от температуры реакции. В присутствии сульфидного вольфрам-никелевого катализатора на активированной глине при весовой скорости 0,6 кг на 1 в час зерна размером 2—4 мм оказались значительно более активными, чем крупные таблетки. Причиной большей активности таблеток диаметром 5 мм высокой плотности но сравнению с таблетками такого же диаметра, но слабо спрессованными, вероятно, является то, что содержание в них значительно большего количества активного сульфида металла более чем компенсирует влияние улучшенных условий диффузии нри малой плотности зерна. [c.148]

    Подобные сложные контактные системы содержат гидрирующий компонент — металл (кобальт, никель, молибден, платина, вольфрам) и деструктирующий и изомеризующий компонент — алюмосиликаты или цеолиты. Применяются также оксиды и сульфиды металлов на алюмосиликатах. [c.141]

    V), мышьяк (III), сурьма (V), сурьма (III), олово (IV), молибден (VI), вольфрам (VI) и рений (VII), образующие сульфиды, не растворимые в кислой среде (НО). [c.224]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]


    Рост переработки сернистых нефтей увеличил значение способов обес-серивания, а внедрение в переработку таких тонких каталитических процессов, как платформинг, потребовало возможно полного удаления сернистых соединений во избежание отравления дорогостоящего катализатора. Наоборот, стабильность действия катализаторов, содержащих сернистый вольфрам и молибден, обеспечивается добавкой сульфида натрия в сырье гидрогенизации. [c.144]

    Вольфрам (IV) сульфид см- Вольфрам (IV) сернистый [c.117]

    В соединениях с серой хром проявляет максимальное валентное состояние — три в сульфиде СгаЗз. Но молибден и вольфрам способны к прояв- [c.157]

    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]

    В процессах гидроочистки различных нефтепродуктов могут быть использованы любые сероустойчивые гидрирующие катализаторы, но лучшие результаты дают металлы, окислы и сульфиды элементов VI или VIII групп периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром) и различные их сочетания друг с другом [40, 83—99]. [c.74]

    Наиболее интенсивно промышленный процесс гидрокрекинга (деструктивной гидрогенизации) развивался в предвоенные и военные годы в Германии. В 1927— 1942 гг. были разработаны катализаторы гидрогенизации (главным образом на основе сульфида вольфрама) для гидрирования в паровой фазе продуктов переработки углей, смол и нефти. Катализатор № 5058 — сернистый вольфрам обладает высокой гидрирующей активностью № 6434 — сернистый вольфрам на активированной природной глине характеризуется повышенными расщепляющими свойствами № 8376 — сернистый ни-кельвольфрамовый на окиси алюминия отличается высокими гидрирующими функциями и малой расщепляющей активностью другой сернистый никельвольфрамо-вый катализатор — № 3076 — имеет весьма высокую гидрирующую активность при переработке сырья с большим содержанием ароматических углеводородов. Сульфидные катализаторы стабильны длительное время при давлении 250—300 ат, после снижения активности их заменяют. [c.77]

    В период 1935-1940 гг. стало ясно, что используемый катализатор относится к числу бифункциональных, т.е. является катализатором гидрирования и крекинга, и основное назначение гидрирующего компонента сохранить чистоту крекирующего компонента. Одновременно удалось установить, что если сульфид вольфрама неизбежно вьшолняет роль и катализатора гидрирования, и катализатора крекинга, то, используя вольфрам на монтмориллоните, можно разделить эти катализаторы и подобрать для каждого из компонентов оптимальные условия работы. Надлежащая предварительная обработка сьфья с целью удаления ядов позволила опробовать значительное число компонентов катализаторов, и в 1939 г. английская компания Imperial hemi al Industries, Ltd. разработала катализатор -железо на обработанном HF монтмориллоните - для второй стадии двухстадийного процесса гидрокрекинга средних масел. Катализатор оказался достаточно хорошим и использовался в Англии для производства авиационного бензина до конца мировой войны. [c.264]

    В качестве катализаторов гидрогенизационных процессов применяются окислы и сульфиды таких металлов, как никель, кобальт, молибден, вольфрам на кислотных носителях — алюмосиликате, окиси алюминия и др. Все эти катализаторы должны быть устойчивы по отношению к катализаториым ядам и особенно к сернистым соединениям. [c.264]

    В качестве катализаторов для гидрогенизационных процессов переработки сернистых нефтепродуктов наиболее отвечающими указанным требованиям являются оксиды и сульфиды элементов VI группы Периодической системы — хрома, молибдена, вольфрама. Их применяют на носителях и без них (например, сернистый вольфрам). Кроме того, широко используют более сложные композиции, включающие элементы VI и VIII групп Периодической системы, — хроматы и хромиты никеля, кобальта, железа молибдаты кобальта, никеля и железа вольфраматы никеля, кобальта, железа или же их соответствующие сульфопроизвод-ные[136, 137, 144 . [c.249]

    Этим требованиям полнее всего соответствуют металлы, окислы и сульфиды элементов VI и VI11 групп Периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром). Состав катализаторов оказывает существенное влияние на избирательность реакций, поэтому соответствующим подбором компонентов катализаторов и их соотнощений удается осуществлять управление процессом гидроочистки моторных топлив в широких пределах. [c.201]

    Приборы и реактивы. Пластинки силанов или легированных сталей, содержащих кадмий, медь, олово, свинец, железо, хром, молибден, вольфрам. Фильтровальная бумага. Капиллярные трубки. Пероксид натрия (кристаллический). Растворы азотной кислоты (пл. 1,4 г/см , 1 2), серной кислоты (1 1), сульфида аммония (0,5 и.), аммиака (2 н.), иодида калия (0,5 н.), роданида калия или аммония (0,5 hJ, гексациано-(И)феррага калия (желтой кровяной соли) (0,5 н.), пероксида натрия (30%-ный), бензидина (насыщенный в 30%-ной уксус- [c.263]


    Все сульфиды металлов подгруппы хрома (Сг5, СгзЗз, Э5г и Э5з для Мо и У) достаточно термически устойчивы и обладают полупроводниковыми свойствами, что подчеркивает их неметаллическую природу. Все они представляют собой координационные кристаллы и обладают переменным составом, что особенно характерно для низших сульфидов. В этом отношении они заметно отличаются от галогенидов, которые нередко образуют или молекулярные структуры, или кластеры. Взаимодействие хрома, молибдена и вольфрама с селеном и теллуром протекает менее энергично, причем вольфрам с теллуром соединений не образует, а в остальных случаях в системах образуется небольшое количество соединений, отвечающих лишь [c.345]

    Восстановительная активность этих металлов растет с уменьшением порядкового номера. Однако, благодаря устойчивой оксидной пленке, только хром является пассивным металлом в широком интервале температур. Молибден и вольфрам начинают окисляться на воздухе при 250—400° С. При 500° С быстро образуется желтого цвета оксид WO3, а при 600°—М0О3. Оксиды летучи (особенно МоОд), пленки их на металлах незащитные. Использование изделий из этих металлов при высокой температуре требует создания водородной или инертной среды. Хром окисляется при нагревании только в виде порошка. Сплавы железа с хромом (и никелем) нержавеющие. Молибден и вольфрам поглощают водород только при 1200° С и выше, а при охлаждении его содержание в металлах уменьшается. Хром с водородом образует неустойчивые гидриды СгН и СгНз, разлагающиеся при нагревании. Эги металлы не реагируют со ртутью и не образуют амальгам. При нагревании с углеродом и углеводородами до 1200— 1400°С образуются карбиды W2 , W , Moj , МоС (являющиеся фазами переменного состава) и различные карбиды хрома. Все три металла образуют силициды, бориды, сульфиды, фосфиды, нитриды различного состава. Нитриды весьма тверды, но не очень химически устойчивы, кар.1иды же в обычных условиях довольно устойчивы. [c.336]

    Промышленное применение нашел вольфрам-никель-сульфид-ный катализатор без носителя [26], приготовляемый осаждением из растворов никелевых солей основного карбоната никеля. После сушки и измельчения карбонат никеля перемешивают с воль-4>рамовой кислотой. Через полученную окисную вольфрам-никеле-вую массу пропускают при нагревании сероводород, затем массу таблетируют (таблетки 10x10 мм). Катализатор содержит 24— 28% N1, 40—44% , 26—29% 5, что отвечает составу 2Ы15- У 2 Насыпная плотность катализатора 2,6 г/мл, удельная поверхность 23—30 м2/г [c.24]

    В качестве катализаторов при процессе катасульф применяются активированный уголь, боксит или предпочтительно сочетание двух металлов. Один из этих металлов, например железо, никель или медь, соединяется с НдЗ, образуя соответствующий сульфид второй металл, например вольфрам, ванадий или хром, служит переносчиком кислорода. Связанный кислород взаимодействует с серой, образуя ЗОа- Добавка свинца к катализатору новы- ц шает его активность и позволяет уменьшить количество металла — переносчика кислорода. Катализаторы применяют в виде сплавов часто в виде проволоки или сетки. Столь же активными являются и окислы этих металлов, обычно применяемые на соответствующих носителях. [c.191]

    Нахождение в природе. Молибден и вольфрам относятся к малораспространенным элементам в земной коре содержание молибдена составляет 3-10- вольфрама Ы0 %. Основными минералами молибдена являются молибденит, или молибденовый блеск МоЗа (сульфид молибдена), по внешнему виду напоминающий графит молибденит часто содержит в виде изоморфной примеси рений (10 —10 %) повеллит СаМо04 (молибдат кальция) нередко часть молибдена ( — 10%) в повеллите замещена вольфрамом Са(Мо, W)04, Меньшее значение имеют минералы вульфенит РЬМо04 (молибдат свинца) и молибдит лгРезОз-г/МоОз-геНзО. Молибден содержится также в медных и медно-свинцовых рудах (до 0,01%), которые используются для его извлечения при комплексной переработке сырья. [c.164]

    Разделение сероводородом и сульфидом аммония. Отделение катионов IV и V групп от кобальта сероводородом 83]. В сильнокислых растворах (pH 1) сероводород осаждает катионы IV и V групп в виде. малораствори.мых сульфидов. Таким путе.м отделяют. медь, серебро, ртуть, свинец, висмут, кад-.мий, рутений, родий, палладий, осмий,. мышьяк, золото, платину, олово, сурьму, иридий, гер.маний, селен, теллур, молибден, таллий, индий, галлий, ванадий и вольфрам от кобальта и других катионов III группы. Однако в присутствии четырехвалентного олова часть кобальта увлекается осадком сульфида олова. Соосаждение предотвращается при пропускании сероводорода в нагретый до 60 " С раствор в I соляной кислоте и акролеин в концентрации 0,5 мл на 100 мл раствора 715]. [c.62]


Смотреть страницы где упоминается термин Вольфрам сульфиды: [c.87]    [c.658]    [c.691]    [c.445]    [c.691]    [c.691]    [c.445]    [c.445]    [c.310]    [c.139]    [c.237]    [c.65]    [c.259]    [c.261]    [c.225]    [c.455]    [c.418]    [c.117]    [c.188]    [c.237]    [c.192]    [c.1861]   
Руководство по неорганическому синтезу (1965) -- [ c.326 ]

Катализ в неорганической и органической химии книга вторая (1949) -- [ c.245 , c.261 , c.291 , c.299 , c.301 , c.302 , c.307 , c.308 , c.320 , c.322 , c.326 , c.330 , c.397 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Современная неорганическая химия Часть 3 (1969) -- [ c.3 , c.363 ]

Общая и неорганическая химия (1981) -- [ c.535 ]

Неорганическая химия Том 2 (1972) -- [ c.221 , c.351 ]

Руководство по неорганическому синтезу (1953) -- [ c.274 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Основы общей химии Т 1 (1965) -- [ c.371 ]

Общая химия (1968) -- [ c.650 ]

Основы общей химии том №1 (1965) -- [ c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Калечиц, Э. Н. Дерягина и В. Г. Липович. Влияние нестехиометрической серы сульфида вольфрама на отдельные реакции процесса деструктивной гидрогенизации гидрирования, гидроизомеризации и изомеризации



© 2025 chem21.info Реклама на сайте