Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионы отделение ISO

    Ионный обмен. Этот метод допускает несколько видоизменений. Часто применяют ионный обмен на катионитах, дополненный избирательным вытеснением поглощенных смолой катионов (отделение Na от алюминия, от магния, Rb от стронция), и обмен на анионитах. Последний метод весьма удобен для разделения систем, в которых один из элементов (выделяемый радиоактивный изотоп или сопутствующий элемент) обладает способностью образовывать устойчивые комплексы со специально добавляемым комплексообразующим агентом. [c.723]


    При исследовании галогенидов было установлено, что значения Rf увеличиваются с возрастанием атомного веса аниона и почти не зависят от катиона. Отделение галогенидов от катиона на целлюлозе обусловлено катионообменным процессом. В ТСХ на целлюлозе (в отличие от бумажной хроматографии) возможно полное отделение [c.101]

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]

    Диметилглиоксим. Структурная формула диметилглиоксима приведена выше. Это соединение применяется как важнейший реагент на N1 для открытия и количественного определения его, а также для отделения от других катионов. Диметилглиоксим образует окрашенное в красный цвет, но растворимое комплексное соединение также с Ре +, и некоторыми другими катионами, [c.126]

    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]


    В работе [121] сделан вывод, что причиной существования граничного слоя воды на поверхности мусковита является гидратация катионов — компенсаторов отрицательного заряда структуры. Их дегидратация связана с затратами энергии и приводит к возникновению структурной составляющей расклинивающего давления. Проявление структурных сил с большой длиной корреляции объясняется сдиранием гидратных оболочек с ионов (отделенных от твердой поверхности) молекулами воды с малым значением I, т. е. дегидратацией ионов, в первую координационную сферу которых наряду с молекулами воды входят и поверхностные атомы кислорода слюды. [c.43]

    Ацетатцеллюлозные мембраны не пригодны для этой задачи, так как задерживают примерно в равной степени катионы и анионы. Используя же дисперсные добавки, образующие на пористых подложках положительно или отрицательно заряженный слой, можно добиться соответственно отделения только катионов или анионов. Причем, если ионы многовалентные, то динамические мембраны по селективности почти не уступают ацетатцеллюлозным (табл. И,11). [c.90]

    Отвержденная смола подвергается грубому дроблению в дробилке 11 я через элеватор 12 и транспортер 13 поступает на завершение поликонденсации. Аппарат 14 для окончательной поликонденсации имеет полки, по которым катионит последовательно проходит сверху вниз в течение 24 ч. Температура на полках 90—100°С. На этой стадии происходит окончательное отверждение полимера и получение катионита трехмерного пространственного строения. Далее катионит измельчают в ножевой 15, а затем дисковой 17 дробилке и просеивают на вибрационных ситах 16 для получения частиц размером 0,3—2 мм. Здесь в аппаратах 16 происходит отделение пыли. Просеянный катионит промывают водой для удаления свободной серной кислоты (выделившейся при отверждении продукта). Промывку осуществляют в колоннах 19 до со- [c.91]

    Деэмульгаторы Отделение воды Катионы, полимеры [c.175]

    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]

    Если в анализируемом растворе кроме нитрат-ионов не было других анионов, то анализ можно закончить рН-метрическим титрованием аликвотной части фильтрата после отделения катионов. [c.324]

    Осадок гидроокиси железа, полученный при действии избытка N1 , адсорбирует гидроксильные ионы, которые, в свою очередь, могут притягивать катионы кальция, магния и др. Поэтому осадок оказывается загрязненным названными ионами. При осаждении гидроокиси железа (без применения избытка NH OH) в слабокислой среде осадок адсорбирует Нойоны ионы водорода обусловливают положительный заряд частиц. Такой осадок слабо адсорбирует катионы, поэтому для отделения железа от кальция и магния лучше вести осаждение без избытка гидроокиси аммония. Наоборот, осадок, полученный в слабокислой среде, сильнее адсорбирует анионы, как, например, 80 . Поэтому для отделения железа от ионов 50 - следует применять избыток гидроокиси аммония. [c.61]

    Применение мембран из ионитов. Чтобы отделить, например, борную кислоту от многих катионов, исследуемый раствор наливают в сосуд, отделенный мембраной из анионита от другого сосуда. Далее проводят электролиз, причем в сосуд с испытуемым раствором погружают катод, во второй сосуд—анод. Катионы в испытуемом растворе не поглощаются анионитом и поэтому не могут проникнуть через анионитовую мембрану. Между тем анионы борной кислоты поглощаются анионитовой мембраной, [c.74]

    Если кислотность раствора устанавливать более точно, а также использовать некоторые другие условия, можно разделить катионы, входящие в одну и ту же аналитическую группу. Так, например, осаждение сероводородом применяют для отделения цинка от железа. В среде уксусной кислоты или монохлоруксусной кислоты (в присутствии некоторого количества солей этих кислот) сернистый цинк количественно осаждается, а двухвалентное железо остается в растворе. В среде 10 н. соляной кислоты можно отделить мышьяк от олова и сурьмы. При pH, равном 5 или б, никель (в виде сульфида) отделяется от марганца и т. д. В ряде случаев для отделения катионов в виде сульфидов связывают некоторые катионы в комплексные соединения. Соответствующие примеры описаны в 23. [c.93]

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]


    Осаждение гидроокисью аммония. Метод применяется для отделения очень малорастворимых гидроокисей трех- и четырехвалентных металлов от более растворимых гидроокисей, а также от катионов, образующих аммиачные комплексы. [c.96]

    Гидроокись аммония обычно применяют в присутствии аммонийных солей, которые значительно уменьшают ее диссоциацию. Наиболее часто этот метод применяется при отделении алюминия, железа и титана от кальция, магния и ряда других катионов. Значительные затруднения при этом вызывает марганец, который при малом избытке гидроокиси аммония не осаждается в виде Мп(0Н)2, однако под влиянием кислорода воздуха окисляется и частично осаждается в виде гидрата окисла высшей валентности. Поэтому при большом количестве марганца осаждение его гидроокисью аммония ведут в присутствии окислителей, например надсернокислого аммония. В этом случае марганец количественно переходит в осадок вместе с алюминием и железом. Осадок гидроокисей алюминия и железа обычно захватывает часть кальция и магния. Поэтому при точных анализах осадок, после отделения его фильтрованием, растворяют в соляной кислоте и повторяют осаждение. Чтобы уменьшить переход в осадок кальция и магния, при осаждении лучше избегать значительного избытка гидроокиси аммония с этой целью осаждение удобно вести в присутствии индикатора, например метилкрасного, который при pH 5 изменяет цвет от красного к желтому. [c.96]

    Для отделения катионов алюминия и титана от катионов железа и от ряда ионов двухвалентных элементов применяют также осаждение тиосульфатом при кипячении. Тиосульфат восстанавливает железо до двухвалентного  [c.97]

    На рис. 193 показаны зависимости pH гидратообразования от концентрации катионов в растворе для индия и других металлов. Из них видно, что ступенчатым изменением pH можно осуществить отделение индия от примесей. [c.550]

    Основным методом отделения и концентрирования следовых количеств веществ является экстракция (см. гл. 38). Многие элементы можно перевести в соединения, малорастворимые в воде, но хорощо растворимые в органических растворителях. Применяя различные лиганды для комплексообразования, меняя рн водного раствора, степень окисления экстрагируемых катионов и применяя различные растворители для экстракции, можно варьировать степень извлечения и концентрирования. В идеальном случае извлекаемый элемент при встряхивании (для увеличения поверхности раздела фаз с целью ускорения достижения равновесного состояния) полностью переходит в органическую фазу, в то время как мещающие определению элементы остаются в водной фазе. Таким образом удается отделить следовые количества элементов от больших количеств других элементов (матрицы) и сконцентрировать их. [c.426]

    Согласно обычно применяемой схеме качественного анализа, представленной на рис. 16.9, все распространенные катионы подразделяются на пять групп. При этом важно соблюдать определенный порядок добавления реагентов. Сначала проводят наиболее селективные отделения, т.е. отделения наименьшего числа ионов. Требуемые для этого реакции должны проходить как можно полнее, чтобы концентрация остающихся в растворе катионов не мешала последующим пробам. [c.134]

    Разделение гидроксидов. Типичным примером аналитической задачи этого рода является разделение трех- и двухзарядных катионов, например, отделение Fe + от в виде гидроксидов. [c.157]

    III группы катионов. Отделение Иона Мп" от катионов первой подгруппы, однако, не может быть полным, так как, окисляясь кислородом воздуха, он частично осаждается из раствора вместе с этой подгруппой в виде МпО(ОН)2. Вследствие этого ион Мп++ целесообразнее открывать до разделения лодгрупп. [c.211]

    Диполь ТГФ локализован на эфирном атоме кислорода. Поэтому возможно, что расположенный вблизи катион отделен от аниона алифати ческими СН.2-группами. Такая разница в расстоянии сильно пони жает соответствующую энергию взаимодействия, и этой энергии доста точно для сольватации катиона и недостаточно для сольватации анионг того же радиуса. [c.242]

    Используя различие в величинах pH, требуемых для осаждения разных оксихинолинатов, можно проводить разделение некоторых катионов. Например, для разделения алюминия и магния осаждение 8-оксихинолином ведут сначала в присутствии ацетатной буферной смеси (СНзСООН + Hs OONa), поддерживающей постоянный pH раствора, равный Как видно из приведенных данных, при этом pH будет осажден только оксихинолинат алюминия, тогда как останется в растворе. После отделения осадка в фильтрате создают аммиачную среду, в этих условиях осаждается оксихинолинат магния. [c.127]

    В других случаях при разделении катионов с помощью ионо-обме[1Ников используют процессы комплексообразования. Например, В1- + может быть отделен от и путем поглощения их к атиэнитом и последующей обработкой катионита раствором К1. При этом В - образует устойчивый комплекс [В114] и в таком виде вымывается из колонки, тогда как Си + и РЬ " остаются в ней. [c.133]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Отделение актиния от продуктов распада, редкоземельных элементов можно осуществить экстракцией последних 3 УИ раствором децилтрифторацетона в бензоле при рН=6- -7 [427, 429]. Дека.три-фторацетон в неполярном растворителе образует экстрагируемые комплексы [426]. Присутствие большого количества ионов затрудняет экстракцию актиния, так как в водной фазе образуются комплексы анионов с актинием и катионов с декатрифтора-цетоном. [c.440]

    Эту реакцию применяют в аналитической химии для отделения 5п + от других катионов. При действии кислот тиостаннаты ра.зла-гаются, образуя 8п 2 и Нг5. Сульфид ЗпЗг растворяется также в растворах щелочей  [c.386]

    Для отделения катализатора от раствора сорбита суспензия поступает на фильтр-пресс 10. Катализатор после отделения раствора сорбита промывается на фильтр-прессе и используется вновь для процесса гидрирования. Раствор сорбита после фильтр-пресса направляется в сборник 11, а промывные воды —в сборник 2, откуда насосами подаются на ионообменные фильтры. Ионообменная очистка раствора сорбита производится на батарее из двух ионообменных фильтров сперва раствор очищается на катионите, а затем — на анионите. По окончании цикла ионообмена для вытеснения раствора сорбита из фильтров вначале подаются промывные воды из сборника 12, а затем — вода. Регенерация анионитов производится раствором едкого натра, катионитов —раствором соляной кислоты. [c.169]

    В последнее время фирма Атлас Кемикл Ко предложила использовать гидрогенизат, получаемый гидрогенолизом углеводов, после отделения от него гликолей и глицерина, под торговым названием Сутро в качестве компонента алкидных смол, умягчите-ля, увлажнителя и для связывания трехвалентных катионов в растворе [14]. Аналогичный продукт предложен [15] для стабилизации полусухого корма для животных [c.181]

    Различие в скоростях движения анионов и катионов приводит к тому, что они переносят разные количества электричества, но это не слелет за собой нарушения электронейтральности раствора, а лишь изменяет концентрацию электролита у катода и анода. Связь между ислами переноса, подвижностями ионов и изменением содержания электролита в катодном и анодном отделениях можно установить составлением материального баланса процесса электролиза. На рис. 73 приведена схема электролиза соляной кислоты. Электродами [c.264]

    Наибольшее применение нашел цирконилфосфат общей формулы 2гОг Р2О5 5Н2О. Этот катионит оказался наиболее пригодным для отделения урана от осколочных элементов его деления °Sr, [c.112]

    Подготовка катионитов. Товарный образец измельчают, просеивают и отбирают определенную фракцию. Катиониты заливают пятикратным по объему количеством насыщенного раствора хлорида натрия и оставляют для набухания на 24 ч. После декантации катионит переносят в делительную воронку и промывают не менее пяти раз 5%-ным раствором соляной кислоты. Общий объем промывающего раствора должен быть больше объема катионита в 30 раз. При каждой промывке катионит взбалтывают с раствором и оставляют на 2 ч, периодически перемешивая. После пятого промывания соляной кислотой катионит промывают дистиллированной водой до нейтральной реакции по мети.иовому оранжевому. Такая подготовка переводит катионит в Н+-форму. Отмытый от кислоты катионит отфильтровывают на воронке Бюхнера, подсушивают на фильтровальной бумаге до состояния свободного отделения зерен друг от друга и хранят в банке с притертой пробкой. [c.119]

    Растворимость осадков вследствие образования комплекса с избытком осадителя. Ряд осадков характеризуется способностью реагировать с избытком осадителя, образуя растворимые комплексные соединения. Так, например, хорошо известны свойства йодистого висмута или йодной ртути. Эти веш,ества мало растворимы в воде для йодистого висмута растворимость составляет около г-молей в 1 л, для йодной ртути соответственно 2Л0 г-молей в 1 л. Таким образом, растворимость этих осадков близка к растворимости, например, сернокислого свинца. Несмотря на довольно малую растворимость, осадки типа В1Лз или HgJ2 нельзя применять в количественном анализе для отделения соответствующих катионов. Содержание определяемого иона, например Н + или В1 " + заранее (перед анализом), конечно, неизвестно. Поэтому нельзя прибавить точно необходимое количество осадителя, в данном случае ионов йода. При введении же избытка осадителя такие осадки растворяются с образованием комплексных ионов HgJз или В Л .  [c.45]

    При любых условиях для образования осадка МеА сливают растворы электролитов, содержащих, кроме реагирующих ионов Мб" и А , еще какие-то прстисоионы. Пусть, например, для образования осадка МеА сливают растворы солей МеХ и YA, где X — анион соли МеХ, а Y — катион соли YA, Очевидно, если необходимо устранить действие иопов, содержащихся во взятых электролитах (т. е. в данном случае ионов Х или Y+), желательно выбрать определенный порядок и скорость сливания растворов, Кристаллические осадки получаются в виде крупных частиц, более удобных для отделения фильтрованием при медленном осаждении. Поэтому, если желательно уменьшить соосаждение анионов Х , следует к раствору соли YA медленно приливать раствор соли МеХ, так как в этом случае осадок образуется при избытке анисков А . Если необходимо уменьшить соосаждение катионов Y +, следует к раствору соли МеХ медленно прибавлять соль YA, так как в растворе МеХ, содержащем вначале много катионов Ме +, соосаждение катионов Убудет сильно уменьшаться. [c.67]

    Отделение анионов от мешающих катионов. Определению ряда анионов (РО4, 804 и др.) мешает присутствие некоторых катионов (Си +, Ni + и т. п.). Мешающие катионы удаляют, пропуская раствор через слой Ма-катиоиита . Таким способом в кислом [c.73]

    Отделение катионов, образуюш,их амфотер-ные гидроокиси. Для отделения молибдена от железа кислый раствор, содержащий катионы железа и молибдена (точнее — молибде-нила MoOj " ), пропускают через слой катионита, при этом поглощаются оба катиона. Затем через катионит пропускают раствор едкой щелочи. При этом железо остается в слое катионита, а молибден образует анион MoO j и переходит в раствор. Аналогичные методы применяют для отделения от железа других элементов (А1, Zn, W, Sn и т. п.). [c.74]

    Реактив синтезирован Л. А. Чугаевым и предложен им для определения никеля. До настоящего времени главные методы определения и отделения никеля основаны на пр шенении этого реактива или его производных. При взаимодействии с солями никеля и ряда других элементов катион замещает ион водорода только одной оксимной группы. Другая оксимная группа играет роль комплексообразующей группы, замыкая прочное шестичленное кольцо. Таким образом, при взаимодействии диметилглиоксима с ионом никеля протекает реакция  [c.102]

    Вместо гидроокиси аммония иногда применяют едкую щелочь. Однако осадок гидроокиси железа адсорбирует заметные количества щелочей, поэтому таким методом обычно пользуются только для отделения железа (например, от алюминия), но не для его определения. Отделение железа от катионов И аналитической группы и ряда других катионов достигаете значительно лучше, если в качестве осадителя применяют некоторые с.табые органические основания, как, например, пиридин СЛ4,Ы. [c.153]

    При осаждении гидроокисью аммония необходимо, чтобы железо в растворе было в окисленной форме. Двухвалентное железо не осаждается количественно гидроокисью аммония кроме того, осадок Ре(0Н)2 очень плохо отделяется фильтрованием. Поэтому при анализе материалов, в которых может присутствовать элементарное железо или его закись, перед осаждением укелеза гидроокисью аммония его необходимо окислить. Иногда при анализе минералов и сплавов перед осаждением гидроокиси железа (или суммы полуторных окислов ) предварительно осаждают сероводородом катионы IV и V аналитических групп. Во время пропускания сероводорода через раствор железо восстанавливается до двухвалентного. Поэтому после отделения осадка сульфидов фильтрованием избыток сероводорода удаляют кипячением, а затем окисляют железо. В качестве окислителя удобнее всего применять перекись водорода или бромную воду. [c.153]

    Диметилглиоксим образует нерастворимые осадки, кроме + +, только с некоторыми другими катионами элементов VIII группы периодической системы, а именно с палладием и частично с платиной. Эти катионы редко встречаются при обычном ходе анализа, и поэтому для количественного отделения никеля и его определения применяется почти исключительно метод осаждения диметилглиоксимом. [c.179]

    В целях отделения иона Рд(Н) от катионов других, тяжелых металлов проводят осаждение диацетилдиоксимом (опыт5),  [c.643]

    Осадки солей серебра в каждом конкретном случае сорбируют лишь небольшую группу элементов. Селективность адсорбции можно целенаправленно изменить, связывая ионы металлов в катионные или анионные хелатные комплексы. Поэтому образование осадка AgX особенно эффективно для отделения следовых количеств элементов в сочетании с такими реакциями. Хорошо изучена сорбция хелатов 1,10-фенантроли-на и его аналогов  [c.424]

    Во время работы гальванического элемента, изображенного на рис. 19.2, окисление Zn приводит к появлению дополнительных ионов Zn-" в анодном отделении элемента. Если не существует способа нейтрализации их положительного заряда, дальнейщее окисление приостанавливается. Подобно этому восстановление Си вызывает появление избыточного отрицательного заряда в растворе в катодном отделении. Принцип электронейтральности соблюдается благодаря миграции ионов через солевой мостик , который показан на рис. 19.2. Солевой мостик представляет собой U-образную трубку, содержащую раствор какого-либо электролита, например NaNOj (водн.), ионы которого не реагируют с другими ионами в гальваническом элементе, а также с материалами, из которых сделаны электроды. Концы U-образной трубки закрывают стекловатой или гелем, пропитанным электролитом, чтобы при перевертывании трубки электролит не вылился из нее. При протекании на электродах процессов окисления и восстановления ионы из солевого мостика проникают в анодное и катодное отделения гальванического элемента, чтобы нейтрализовать образующиеся там заряды. Анионы мигрируют по направлению к аноду, а катионы-по направлению к катоду. В принципе во внещней цепи не протекает никакого тока до тех пор, пока ноны не получат возможность мигрировать через раствор из одного электродного отделения в другое и тем самым замыкать электрическую цепь. [c.206]

    Из табл. 14 видно, что для большинства приведенных солей значения ПР, а следовательно, и их растворимость ( в моль/л) умеиынаются 01 км. и.цпя к барию, особенно это относится к хро-матам. Так, растворимость хроматов при переходе от кальция к барию уменьшается почти в 1600 раз, в то время как для сульфатов и фосфатов эти цифры соответственно составляют 460 и 80. Растворимость оксалатов в том же направлении увеличивается приблизительно в 7 раз. Различия в растворимости хроматов и сульфатов используются в систематическом ходе анализа для отделения друг от друга катионов II группы. Различия же в растворимости меньшего порядка существенного значения не имеют. [c.247]


Смотреть страницы где упоминается термин Катионы отделение ISO: [c.161]    [c.242]    [c.254]    [c.64]    [c.244]   
Качественный полумикроанализ (1949) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте