Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиморфизм человека

    БИОХИМИЧЕСКИЙ ПОЛИМОРФИЗМ ЧЕЛОВЕКА [c.192]

    Сбалансированный полиморфизм создается при сосуществовании в одной популяции различных форм при стабильных условиях среды. Наиболее ярким его примером служит наличие двух полов у животных и растений. Частоты генотипов различных форм сбалансированы, так как обе формы обладают равноценными селективными преимуществами. Примером сбалансированного полиморфизма у человека служат Фуппы крови А, В, АВ и О. Частоты разных генотипов в разных популяциях могут варьировать, однако в данной популяции они остаются постоянными из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Как показывают статистические данные, у мужчин белой расы с группой крови О ожидаемая продолжительность жизни выше, чем у мужчин с другими группами крови, однако у обладателей группы О чаще, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти. Другие примеры полиморфизма — нормальное зрение и цветовая слепота у человека, касты рабочих, трутней и маток у общественных насеко- [c.329]


Рис. 8.7. Полиморфизм длины рестрикционных фрагментов 5 -фланкирующего участка гена инсулина человека. Указано место вставок длиной 1,5 и 3,4 кЬр. Рге — участок, кодирующий аминокислотную последовательность, примыкающую к К-концу проинсулина, которая, видимо, способствует его секреции в эн-доплазматйческий ретикулум В, С и А — последовательности, кодирующие В-цепь, конвекторный пептид и А-цепь инсулина. Заштрихованный участок — интрон (гл. 7). Рис. 8.7. <a href="/info/587024">Полиморфизм длины рестрикционных фрагментов</a> 5 -фланкирующего участка <a href="/info/1324232">гена инсулина</a> человека. Указано место вставок длиной 1,5 и 3,4 кЬр. Рге — участок, кодирующий <a href="/info/31042">аминокислотную последовательность</a>, примыкающую к К-концу проинсулина, которая, видимо, способствует его секреции в эн-доплазматйческий ретикулум В, С и А — последовательности, кодирующие В-цепь, конвекторный пептид и А-<a href="/info/155767">цепь инсулина</a>. Заштрихованный участок — интрон (гл. 7).
    Что такое генетический полиморфизм Почему полиморфные локусы важны для картирования генов заболеваний человека  [c.482]

    Построение генетической карты сцепления человека с помощью метода, основанного на полиморфизме длины рестрикционных фрагментов [c.458]

    Часто встречающиеся типы полиморфизма у человека, которые можно типировать с помощью полимеразной цепной реакции [c.458]

    Среднеевропейская выборка, сформированная Центром по изучению полиморфизма человека (Париж, Франция) [c.342]

    Центр по изучению полиморфизма у человека, находящийся в Париже. Располагает базой данных по генетической и молекулярно-генетической изменчивости популяций человека из большинства регионов земного шара. [c.560]

    Изоферменты групп 1 и 2 (табл. 12.4) встречаются у всех особей данного вида, но изоферменты группы 3 (возникшие в результате аллельных вариаций) имеются только у определенных особей. У человека наиболее изученным примером генетического полиморфизма белка является полиморфизм гемоглобина, для которого описано более 150 вариантов [3023]. Подобные варианты, по-видимому, имеются у большинства других белков, в том числе и у ферментов, и если последние различаются по своим свойствам, то их рассматривают как изоферменты. Известен по крайней мере 21 вариант глюкозо-6-фосфат — дегидрогеназы (КФ 1.1.1.49) человека [1790]. Индивидуумы, гетерозиготные по данному гену, синтезируют обычный и видоизмененный белки, и если рассматриваемый фермент является димером или более сложным олигомером, могут образовывать- [c.114]

    Бурное развитие молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря новаторским идеям Д. Ботштейна, Р. Уайта, М. Скол-ника и С. Дэвиса. Они обратили внимание, что полиморфизм длины рестрикционных фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы), поддающиеся картированию. Как писали авторы в своей статье, мы хотим предложить новый способ построения генетической карты сцепления человека. В его основе лежит создание при помоши технологии рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой . Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро- [c.458]


    Полиморфизм белков в филогенезе — существование гомологичных белков у разных видов. У этих белков консервативными (неизменяемыми) остаются участки первичной структуры, отвечающие за их функцию. Для замещения утраченных белков в организме человека используют гомологичные белки животных, в первичной структуре которых имеются минимальные различия (инсулин быка, свиньи, кашалота). [c.34]

    Важнейшей частью генетики человека сегодня является эко- и фармакогенетика. Изучая генетический полиморфизм популяций человека, ученые начали понимать биохимические механизмы трансформации ксенобиотиков (чужеродных для организма соединений). Оказывается, более 200 наших генов имеют отношение к их детоксикации. [c.143]

    Для микобактерий туберкулеза характерен выраженный полиморфизм. В их цитоплазматической мембране обнаруживаются характерные включения — зерна Муха. Микобактерии в организме человека могут переходить в Ь-формы. [c.110]

    Естественно, что большой размер генома человека значительно осложняет определение индивидуального полиморфизма. На практике оказывается даже трудно установить, какую часть генома следует изучать. Однако методы манипуляции с ДНК получили такое мощное развитие (гл. 17), что удалось достичь значительного прогресса в идентификации генов для нескольких болезней человека. [c.49]

    Аутентичность обнаруженного гена человека можно считать доказанной, если у больных индивидов в нем найдены изменения, отсутствующие в генах здоровых лиц. Для выявления мутаций часто используют анализ конформационного полиморфизма одноцепочечной ДНК (SS P). [c.480]

    При изучении системы трансферрин — кональбумин у домашней птицы было показано, что железосвязывающие белки могут синтезироваться во многих тканях и что ген трансферрина может определять синтез различных форм белка в разных тканях. У цыплят описана гетерогенная популяция железосвязывающих белков, подобная той, которая наблюдается при сравнении белков сыворотки крови и СМЖ у человека [60]. Трансферрин сыворотки курицы и кональбумин яичного белка сходны по иммунологическим свойствам и аминокислотному составу. Оба белка образуют аналогичные продукты после обработки трипсином и химотрипсином, и тот и другой содержат аланин в качестве N-концевой аминокислоты. Генетически обусловленный полиморфизм трансферрина сыворотки цыпленка отражается в соответствующем полиморфизме кональбумина яичного белка [69]. Генетические вариации трансферрина сыворотки птиц были описаны Мюллером и сотр. [70]. Вильямс [60] показал, что обработка нейраминидазой не оказывает влияния на электрофоретическую подвижность кональбумина в крахмальном геле. Однако тот же фермент уменьшает подвижность двух компонентов трансферрина сыворотки цыпленка, образуя компоненты, соответствующие по подвижности компонентам кональбумина. Это позволило автору предположить, что трансферрин и кональбумин отличаются только по содержанию сиаловой кислоты в углеводных простетических группах. Основываясь на данных, полученных в опытах по включению меченых аминокислот в кональбумин в срезах яйцеводов, тот же автор [60] постулировал, что ген трансферрина у птиц определяет синтез как трансферрина (в печени), так и кональбумина (в яйцеводах). [c.126]

    Эволюцию МНС-кластера можно объяснить, если считать, что некоторые комбинации генов, принадлежащих этому кластеру, обеспечивают лучшее взаимодействие со средой, чем другие. В таком случае некроссоверы имеют селективное преимущество и становится понятным неравновесие по сцеплению. Однако аналогия с мимикрией у бабочек не может быть столь же прямой, когда мы хотим объснить сохранение высокого уровня полиморфизма. Учитывая огромное разнообразие вирусов и бактерий, способных поражать человека, разумно предположить, что значительное увеличение частоты индивидов, устойчивых к патогенному микроорганизму, легко может привести к отбору мутантных форм, особенно эффективных для инфицирования индивидов с таким генотипом. Тем самым выработанная ранее адаптация этих генотипов устраняется. Итак, полиморфизм человека может быть ответом на вызов многообразия мутантных форм вируса. К этой теме мы вновь вернемся в разделе о естественном отборе вследствие инфекционных заболеваний. [c.225]

    С. вырабатывается и секретируется в кровь специализир. клетками гл. обр. передней доли гипофиза-соматотрофа ш. Содержание С. в гипофизе человека более чем на порядок превышает содержание др. гормонов этой эндокринной железы. Для С. характерен мол. полиморфизм, к-рый обусловлен альтернативным сплайсингом пре-мРНК или посттрансляц. модификацией (специфич. ограниченный протеолиз, гликозилирование, фос- [c.383]

    В начале 80-х годов в геноме человека были А TGA обнаружены последовательности ДНК, обладаю-GAAA А щие свойствами структурного полиморфизма — Т A T называемые гипервариабельные области [c.163]

    Человек. Частота хронических отравлений высока. Латентный период от 5 до 42 мес. вызывает сложную профессиональную патологию, получившую название винилхлоридная болезнь [4, с. 221]. Различают три стадии заболевания. На первой стадии слабость, раздражительность, головная боль, головокружение, нарушение сна, потеря аппетита, тошнота. Клиническая картина отличается полиморфизмом, наклонностью к вегетативным пароксизмам с нарушениями вегетативно-сосудистой, терморегуляторной, нефротрофической, нейроэндокринной регуляции, тенденцией к анемизации с легкими гемолитическими явлениями. Возможны костнотрофические нарушения, проявляющиеся остеолизом ногтевых фаланг, их болезненностью. На этой стадии изменения нестойкие и при прекращении контакта с X. обратимы. На второй стадии интоксикации на фоне описанных явлений развивается вегетативный полиневрит. Почти постоянно чувство онемения конечностей (синдром мертвых пальцев ), чувствительность, в том числе и болевая, снижена по типу перчаток или носков . Спастическое состояние сосудов переходит в атоническое (побеление, синюшный оттенок кожи). Ощущаются боли в области сердца. Возникают аритмия, экстрасистолия. Вследствие нарушения регуляции высших вегетативных центров изменяется терморегуляция, снижается основной обмен. Усиливается секреторная функция желудка. [c.423]


    Жидковристаллическое состояние весьма распространено в живой природе. Возможно, что оно является необходимым условием функционирования всех без исключения живых систем. Причина этого состоит в том, что процессы метаболизма требуют наличия векторных потоков как нейтральных, так и заряженных частиц. Строгая направленность потоков молекул и зарядов, которая приводит к появлению электрических полей, необходимость разделения разноименных зарядов в ходе различных реакций — все это может быть реализовано только при помощи упорядоченных структур. Однако в живых организмах, в отличие от устройств, создаваемых человеком, необходимые структурные элементы не могут быть построены из любого мыслимого мате)риала. Самым необходимым свойствам такого материала должна быть его способность к самосборке [1]. Кроме того, материал должен сочетать в себе достаточно устойчивую упорядоченность с возможностью полиморфизма, т. е. со способностью структуры к изменению при изменении некоторых параметров окружающей среды. Обе эти особенности присущи жидкокристалличеокому состоянию. Наглядным примером такой структуры являются сократительные белки мышечной ткани [2]. Известно также, что синтез оптичеоки активных димеров [c.249]

    Но, может быть, самым главным итогом развития генетики человека к концу XX в. явилось все же создание генетических технологий для медицины. Они принципиально изменили многие разделы медицины, и не только в области наследственных болезней. В современной теоретической медицине они решают массу вопросов расшифровка патогенеза болезней выявление причин клинического полиморфизма установление причин хронического течения болезней расшифровка фармакогенетических особенностей. Они же удачно оккупировали и клиническую медицину, став незаменимыми при диагностике, лечениии и профилактике наследственных и инфекционных болезней генотерапии наследственных, вирусных и онкологических заболеваний производстве лекарств на основе генной инженерии. И еще два принципиальных [c.142]

    Но продолжим наш экскурсионный обзор. Вот еще одно интересное и важное направление генетики — структурная геномика человека. Здесь новые горизонты открываются в связи с изучением однонуклеотидного полиморфизма. Есть много оснований думать, что это — наиболее общая форма генетической изменчивости. Предполагается, что расшифровка данного явления может радикально изменить понимание биологических закономерностей и сделать важный вклад в прогресс медицины. [c.143]

    Сегодня уже ясно, что мутационный груз человечества накапливался в популяциях в форме сбалансированного полиморфизма или наследственной патологии. Он характеризует наше прошлое, и мы сейчас живем с этим грузом в катастрофически меняюш ихся с генетической точки зрения условиях. В XX в. появилось много новых факторов и условий, меняюш их наследственность человека, с которыми он как биологический вид не сталкивался на протяжении своей длительной эволюции. Это — миграция населения и расширение границ браков, планирование семьи у здоровых людей и репродуктивная компенсация в отяго-ш енных наследственной патологией семьях, насыщение среды обитания человека мутагенами и т. д. Генетические процессы в популяциях человека (изменение частот генов и генотипов, мутационный процесс, отбор) обладают большой инертностью. Вот почему генетические последствия изменения среды обитания человека проявятся не через 1-2 поколения, а, скорее всего, через десятки поколений. Задача современной популяционной генетики человека — научиться предсказывать нежелательные последствия на уровне популяции и снижать неблагоприятные генетические эффекты окружающей среды, изменения демографической структуры, а также уменьшать груз наследственной патологии предыдущих поколений. И генетика человека даже сегодня многое может сделать в этой области. [c.144]

    И еще один, очень важный момент необходимо подчеркнуть. Генетика помимо сугубо научных и технических проблем ставит перед человечеством и морально-этические проблемы. Ведь одна из главных биологических ценностей рода человеческого — его генетический полиморфизм, уникальная индивидуальность каждого из нас. Евгенические попытки ввести программы, которые на основании генетической информации ограничивают репродуктивную свободу людей и унифицируют человечество, совершенно неприемлемы для современного общества ни с научной, ни с моральной точки зрения. Чем далее развивается генетика человека, тем строже должны соблюдаться этические нормы в исследовательской и клинической работе, и тем упорнее ученые должны защищать общество от нарушений морали. И это положение особенно актуально сегодня в связи с зарождением генотерапии, попытками клонирования человека, доклинической диагностикой наследственной предрасположенности. [c.145]

    Так же как у человека, полиморфизм трансферрина обнаружен у некоторых видов млекопитающих, включая макак-резусов [96, 111, 114—120], шимпанзе [96, 107, 121], крупный рогатый скот [110, 111] и мышей [108, 109]. Относительная электрофоретическая подви кность трансферринов шимпанзе и макак-резусов приведена на рис. 6. Действие нейраминидазы на трапсфер-рины приматов и крупного рогатого скота показано на рис. 7. [c.133]

Рис. 6. Полиморфизм трансферрина обезьян шимпанзе и макак-резусов. Электрофорез на крахмальном геле. Окрашивание амидочерным (а) и авторадиография (б). В семи сыворотках макак-резусов и трех сыворотках шимпанзе можно обнаружить восемь известных молекулярных видов трансферрина макак-резусов и четыре известных вида трансферрина шимпанзе. Трансферрин человека -- трансферрин фенотипа СС. Трансферрин макак-резусов помечен по системе Гудмана и Поулика [118], а трансферрин шимпанзе — по системе Бойера и Янга [107]. Рис. 6. <a href="/info/1872891">Полиморфизм трансферрина</a> обезьян шимпанзе и <a href="/info/1338542">макак-резусов</a>. Электрофорез на <a href="/info/213948">крахмальном геле</a>. Окрашивание амидочерным (а) и авторадиография (б). В семи сыворотках <a href="/info/1338542">макак-резусов</a> и трех сыворотках шимпанзе можно обнаружить восемь известных <a href="/info/910608">молекулярных видов</a> трансферрина <a href="/info/1338542">макак-резусов</a> и четыре известных вида трансферрина шимпанзе. <a href="/info/1872890">Трансферрин человека</a> -- трансферрин фенотипа СС. Трансферрин <a href="/info/1338542">макак-резусов</a> помечен по системе Гудмана и Поулика [118], а трансферрин шимпанзе — по системе Бойера и Янга [107].
    Шим и Бирн [198] исследовали гаптоглобиновый полиморфизм с иммунологической точки зрения. Чтобы показать, что антигенные детерминанты молекулы гаптоглобина находятся как в а-, так и в р-ценях, были использованы антитела к очищенному гаптоглобулину сыворотки человека типа 1-1. [c.256]


Смотреть страницы где упоминается термин Полиморфизм человека: [c.459]    [c.25]    [c.340]    [c.23]    [c.202]    [c.167]    [c.467]    [c.413]    [c.344]    [c.97]    [c.433]    [c.441]    [c.7]    [c.199]    [c.344]    [c.131]    [c.131]    [c.316]   
Генетические исследования (1963) -- [ c.432 , c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Полиморфизм



© 2024 chem21.info Реклама на сайте