Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генные обнаружение

    Обнаружение интронов в большинстве эукариотических генов заставило задуматься о том. как и когда возникли интроны и какова нх роль в эволюции гено.ма. [c.191]

    С одной стороны, имеются свидетельства о достаточно древних случаях внедрений ретротранспозонов, затем сохранивших неизменным свою локализацию. Так, в промежутке между генами эмбриональных глобинов у и у обнаружен один и тот же элемент у людей, относящихся к разным расам. С другой стороны, [c.229]


    Другая важная задача — выведение трансгенных животных, устойчивых к заболеваниям. Потери в животноводстве, вызванные различными болезнями, достаточно велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемых микроорганизмами, вирусами, паразитами и токсинами. Пока результаты селекщш на устойчивость животных к различным заболеваниям невелики, но обнаде-живающи. В частности, созданы популяции крупного рогатого скота с примесью крови зебу, устойчивые к некоторым кровепаразитарным заболеваниям. Установлено, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. Вторжению возбудителей, равно как и их размножению, препятствуют в основном иммунная система организма и экспрессия генов главного комплекса гистосовместимости. Одним из примеров гена резистентности у мышей служит ген Мх. Этот ген, обнаруженный в модифицированной форме у всех видов млекопитающих, вырабатывает у Мх -мышей иммунитет к вирусу гриппа А. Ген Мх был вьщелен, клонирован и использован для получения трансгенных свиней, экспрессирующих ген Мх на уровне РНК. Однако данные о трансляции Мх-протеина, обусловливающего устойчивость трансгенных свиней к вирусу гриппа А, пока не получены. Ведутся исследования в целях получения трансгенных животных, резистентных к маститу за счет повышения содержания белка лакто-ферина в тканях молочной железы. На культуре клеток из почек трансгенных кроликов было показано, что клеточные линии, содержащие трансгенную антисмысловую РНК, имели резистентность против аденовируса Н5 (Ads) более высокую на 90 — 98% по сравнению с контрольными линиями клеток. Л. К. Эрнст продемонстрировал также устойчивость трансгенных животных с геном антисмысловой РНК к лейкозу крупного рогатого скота, к заражению вирусом лейкоза. [c.130]

    В качестве одной из примечательных особенностей генетического материала цианобактерий отмечают значительные различия величины цианобактериальной хромосомы. Размеры геномов, изученные более чем у 100 щтаммов из разных групп, располагаются в диапазоне 1,6 —8,6-10 Да, при этом просматривается определенная корреляция между степенью морфологической сложности и величиной генома, достигающего максимальных значений у цианобактерий со сложной организацией трихомов и циклами развития. В группе цианобактерий сформирован самый крупный геном, обнаруженный до сих пор у прокариот. В то же время некоторые цианобактерии в отнощении морфологической сложности также достигли верщины в мире прокариот и не имеют равных среди других грамотрицательных эубактерий. [c.313]


    В качестве одной из примечательных особенностей генетического материала цианобактерий отмечают значительные различия величины цианобактериальной хромосомы, т. е. объема заключенной в ней информации. Размеры геномов, изученные более чем у 100 штаммов из разных групп, располагаются в диапазоне 1,6—8,6-10 Д, при этом просматривается определенная корреляция между степенью морфологической сложности и величиной генома. Размеры геномов большинства одноклеточных цианобактерий I группы лежат в области 1,6—2,7-10 Д,. что сходно с таковыми большинства прокариот (1—3,6-10 Д). Геномы цианобактерий остальных четырех групп имеют большую величину (см. табл. 33—36), в целом коррелирующую со степенью их морфологической сложности и достигающую максимальных значений в группе гетероцистных цианобактерий со сложной организацией трихомов и циклами развития. В группе цианобактерий сформирован самый крупный геном, обнаруженный до сих пор у прокариот. В то же время некоторые цианобактерии в отношении морфологической сложности также-достигли вершины в мире прокариот и не имеют равных среди других грамотрицательных бактерий. [c.275]

    Интересно, что выражение гена glnF (rpoN) не зависит от концентрации NH . По-видимому, в клетке всегда имеются молекулы РНК-полимеразы, содержащие сигма °-субъединицу. Следует добавить, что в промоторной зоне Ntr-генов обнаружен также специальный участок связывания белка NRi. [c.43]

    Вьшеление гена Определение дефекта гена Обнаружение первичного продукта гена [c.19]

    S holvein проба Шольвейна на фос ген в хлороформе — обнаружение фосгена по помутнению смеси хлороформа с раствором анилина в безводном бензоле [c.507]

    Именно Уилкинс пробудил у меня интерес к рентгеноструктурным исследованиям ДНК. Произошло это в Неаполе, на небольшой научной конференции, посвященной структурам макромолекул, обнаруженных в живых клетках. Дело было весной 1951 года, когда я еще и не подозревал о существовании Фрэнсиса Крика. Собственно, ДНК я уже занимался и в Европу приехал для изучения ее биохимии на стипендию, полученную после защиты докторской диссертации. Мой интерес к ДНК вырос из возникшего в колледже на последнем курсе желания узнать, что же такое ген. В аспирантуре Университета штата Индиана я рассчитывал на то, что для раскрытия загадки гена химия может и не потребоваться. Это отчасти объяснялось ленью в Чикагском университете я интересовался в основном птицами и всячески избегал изучения тех разделов химии и физики, которые представлялись мне хоть мало-мальски трудными. Биохимики университета на первых порах поощряли мои занятия органикой, но после того как я вздумал подогреть бензол на бунзеновской горелке, от дальнейших занятий настоящей химией я был освобожден. Намного безопаснее было выпустить доктора-недоучку, чем подвергаться риску нового взрыва. [c.20]

    В последнее время птерины привлекли к себе особое внимание в связи с изучением механизма наследственности, так как их образование у некоторых насекомых (например. Drosophila melanogasier) специфически стимулируется или подавляется различными мутациями генов. Для птеринов характерна сильная флуоресценция в ультрафиолетовом свете, и это свойство часто используется для их обнаружения. [c.1050]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    Взаимосвязь между генами и молекулами белка можно проследить на примере разных форм гемоглобина, обнаруженных в эритроцитах человека. В 1949 г. было установлено, что у некоторых людей, страдающих серповидноклеточной анемией, эритроцит содержит форму гемоглобина (гемоглобин S), которая отличается от гемоглобина эритроцитов большинства людей (гемоглобин А). Различие этих форм невелико две а-цепи молекулы гемоглобина S идентичны а-цепям молекулы гемоглобина А, а -цепи различаются одним аминокислотным остатком. -Цепь гемоглобина А имеет в шестом положении, считая от ЫНа-конца полипептидной цепи, остаток глутаминовой кислоты, в то время как -цепь гемоглобина S имеет в этом положении остаток валина все другие остатки аминокислот те же, что и в гемоглобине А. [c.453]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]


Рисунок 8. Часть последовательности V-гена, в котором нaблDдaJШ ь соматические мутации (их число указано цифрами под позицией в которой они наблюдались)1161. Большими буквами выделены сайты мутирования, в которых обнаружен консенсус Й8У. Рисунок 8. <a href="/info/1821985">Часть последовательности</a> V-гена, в котором нaблDдaJШ ь <a href="/info/293624">соматические мутации</a> (их число <a href="/info/611331">указано цифрами</a> под позицией в которой они наблюдались)1161. Большими буквами выделены сайты мутирования, в которых обнаружен консенсус Й8У.
    Изучение частот рекомбинаций между различными штаммами фагов вскоре показало, что некоторые сайты мутаций тесно сцеплены друг с другом. Рекомбинация между такими сайтами происходит редко. Другие же сайты сцеплены слабо друг с другом, и рекомбинации между ними происходят часто. Эта ситуация напоминает обнаруженную на много лет раньше ситуацию с генами плодовой мушки (дрозофилы)кукурузы и других высших организмов. Главная идея, на которой основано картирование хромосом любого организма, состоит в предположении, что частота реком- РИС. 15-20. Стерильные пятна, образованные бак- [c.249]

    Изучение ауксотрофов по питательным веществам сыграло важнук> роль в развитии биохимии, но, к сожалению, с помош,ью этого метода можно изучать только один ген или группу генов, участвующих в синтезе какого-либо конкретного субстрата. Было бы желательно, однако, располагать методами обнаружения мутаций всего набора генов, содержащихся в клетках. Но этому препятствовало то обстоятельство, что большинство мутаций легальны, причем во многих случаях устранить этот эффект добаменнем всевозможных субстратов не удается. Ранние генетические исследования показали, что летальные мутации [c.252]

    Какие химические процессы лежат в основе супрессии (подавления) одной мутации другой мутацией, локализованной в иной точке хромосомы Однозначного ответа на этот вопрос дать нельзя. Редко мутация супрессируется другой мутацией, локализованной в пределах того же самого гена. Такой эффект может быть назван внутригенной комплементацией. Предположим, что мутация приводит к такой аминокислотной замене, которая нарушает стабильность структуры или функцию белка. Возможно, что мутация в другом сайте, захватывая остаток, взаимодействующий с замещенной аминокислотой, меняет характер взаимодействия двух остатков, что приводит к восстановлению функциональной активности белка. Так, например, если боковая цепь первой аминокислоты мала, а в результате мутации она замещается на более длинную боковую цепь, то вторая мутация, приводящая к уменьшению размера другой боковой цепи, может позволить образующемуся белку свертываться и функционировать подобно нормальному белку. Такой случай был обнаружен среди мутантов триптофансинтетазы [144]. Мутанты этого белка, у которых Gly-211 был заменен на Glu нли Туг-175— на ys, синтезировали неактивные ферменты, тогда как двойной мутант, т. е. мутант, в котором имели место обе эти замены, синтезировал активную триптофансинтетазу. Считают, что в большинстве случаев внутригенной супрессии происходят изменения во взаимодействии субъединиц олигомерных белков. [c.255]

    Ответ на вопрос о том, почему гены фага X могут в течение определенного времени не проявлять себя, был дан после того, как был обнаружен реирессорный белок [159, 161. Один короткий оперон про-фага % постоянно транскрибируется РНК-нолимеразой Е. соИ. Этот оперон содержит refibi l и rex. Как показано на рис. 15-22, считывание этих генов начинается с 1-иепей ДНК профага. Белок, кодируемый геном с1, играет роль репрессора. Репрессор представляет собой олигомер (чаще всего димер), мол. вес одной субъединицы в котором составляет 27 ООО. Этот белок связывается с двумя операторными участками ДНК профага. Один оператор (о ,) расположен слева, а дру- [c.259]

    После того как была идентифицирована ДНК-полимераза Г (разд. А, 3, а), считалось, что обнаружен основной фермент, обеспечивающий элонгацию цепи при синтезе ДНК. Однако открытие amber-мутанта Е. соН, у которого отсутствовал ген, кодирующий полимеразу Г (ген polA рис. 15-1), а синтез ДНК тем не менее протекал нормально стимулировало интенсивный поиск новых ДНК-полимераз. Были обнаружены два других фермента — ДНК-полимераза II (ген polB) ff ДНК-полимераза III, содержание которых не превышало 25% содержания ДНК-полимеразы I [195, 196]. По своим свойствам оба фермента Напоминали ДНК-полимеразу I, однако в некоторых отношениях эти ферменты значительно различались. [c.274]

    Мало кто сомневается сейчас в возможности искусственного включения генов в клетки человеческого организма, однако, как осуществляется контроль транскрипции и трансляции генов у животных, мы еще ллохо себе представляем. Дальнейшие исследования, несомненно, помогут понять природу этого контроля, и тогда, возможно, удастся успешно прибегнуть к генной хирургии . Одной из целей этого метода может явиться, в частности, обнаружение способов коррекции дефектов метаболизма, вызывающих атрофию секретирующих инсулин р-клеток поджелудочной железы при ювенильном диабете. Число больных, которым такое лечение сможет помочь, необычайно велико (дополнение П-В). [c.295]

    Если одни гены избирательно инактивируются или попеременно включаются и выключаются, то другие в некоторых случаях необратимо утрачиваются в процессе клеточной дифференцировки. В хромосомах отдельных клеток во время митоза, по-видимому, имеет место генетическая рекомбинация. Был обнаружен кроссинговер между сестринскими хроматидами. Однако если при этом происходит обмен равными количествами генетического материала, то изменения генетики дочерних клеток не наступает. С другой стороны, если в одной молекуле ДНК оказываются две и более одинаковые последовательности оснований, то возможен неравный кроссинговер (гл. 16, разд. Ж, 3) с потерей генетического материала одной из дочерних клеток. По существу в этом может состоять предопределенная программа дифференциации для некоторых клеток. [c.363]

    К4[Ре(СН) . В щелочных р-рах окисляет НзЗ до 8, Н1 до 1з, РЬО до РЬОз, ННз до N2 и солей аммония, У до ХУО . С солями Ре(П) образует темно-синий осадок турнбулле-вой сини. С конц. НзЗО реагирует, давая ГеН(804)2, КН804, ЫН4Н504 и СО. Получают К. г.(III) окислением К4[Ге(СН)( ] хлором или бромом. Компонент тонирующих, отбеливающих, усиливающих, ослабляющих р-ров в фотографии, электролит в хемотронных приборах, компонент электролита в гальванопластике, реагент для обнаружения Ге , и, Токсичен. [c.287]

    Обычно активные центры ферментов включают части всех структурных доменов глобулярного белка. Активные центры всех известных мультидоменных белков (табл. 5.2) расположены между доменами (рис. 4.1). Эти домены определяются не только как глобулярные области, разделенные полостью активного центра, но имеют и другое характерное для доменов свойство — они связаны между собой только одной пептидной цепью (табл. 5.2). Субстраты и кофакторы обычно присоединяются к разным доменам. В случае NAD связывающий кофактор домен всегда имеет ту же самую с довольно развитой открытой поверхностью топологию н NAD присоединяется в эквивалентных положениях (рис. 5.17, б), что является результатом эволюции [254, 255]. Кроме того, этот домен обнаружен на N-конце трех дегидрогеназ и одной киназы [230— 233, 235], а также на С-концевой половине четвертой дегидрогеназы [234] и в средней части фосфорилазы [236], что указывает на возможность дупликации соответствующего гена и его переноса в другое место генома. Все эти факты, включение в активный центр частей различных доменов, наличие кофакторепецифичных доменов и возможность переноса домена дают основание предположить, что ферменты конструируются с использованием модульной системы кофактор и субстратспецифичные домены, необходимые для обеспечения заданной функции, отбираются и объединяются в одной цепи глобулярного белка [124, 256]. [c.117]

    Повторяемость структуры в белке может также вызываться неодинаковым перекрестным соединением генов (кроссинговером). Мультипликация генов с последующим их слиянием приводит к генным продуктам с двумя или более идентичными субструктурами [587]. Однако, как показывает нижеследующий пример, к такому же результату могут привести и другие процессы. Случай частичной структурной дупликации обнаружен в редкой аа-цепи гаптоглобина человека [145, 588]. Поскольку аминокислотные последовательности обеих частей идентичны, а также идентичны с большим участком обычной агцепи, эта структурная дупликация должна была произойти совсем недавно. Скорее всего она вызвана хромосомной аберрацией (неэквивалентным кроссинговером) в предшествующей популяции (человека). Если бы это событие произошло намного раньше, так что гомология последовательностей оказалась бы стертой аминокислотными заменами, вставками и делециями, различить дупликацию и последующее слияние генов, с одной стороны, и хромосомную аберрацию — с другой, было бы невозможным. Поэтому все очень давно возникшие случаи структурных повторений обычно относят к дупликациям генов , не пытаясь провести различия между разными механизмами. [c.230]

    Регулируемые терминаторы бактерий называют аттенюаторами (ослабителями). Впервые обнаружен и лучше других изучен аттенюатор триптофанового оперона Е. соИ. Этот оперон состоит из пяти генов, кодирующих ферменты биосинтеза триптофана. Регуляцию осуществляют две системы, чувствующие потребность клетки в триптофане. Первая система влияет на эффективность инициации на промоторе оперона. Репрессор триптофанового оперона в комплексе с триптофаном присоединяется к оператору, расположенному перед стартовой точкой транскрипции в районе —10 , и стерически препятствует РНК-полимеразе присоединяться к промотору. Таким образом, при избытке триптофана оперон репрессирован. В отсутствие триптофана репрессор теряет способность связываться с оператором, в результате чего оперон индуцируется. Эту систему дополняет регуляция в аттенюаторе, расгГоложенном на расстоянии 180 п. н. от стартовой точки транскрипции внутри <оидерной последовательности, предшествующей инициирующе.му кодону первого структурного гена. В условиях избытка триптофана лишь одна из десяти молекул РНК-полимеразы, начавших синтез РНК на триптофановом промоторе, преодолевает этот терминатор и переходит в область структурных генов. При уменьшении количества триптофана доля молекул РНК-полимеразы, преодолевающих аттенюатор, возрастает. [c.158]


Смотреть страницы где упоминается термин Генные обнаружение: [c.47]    [c.383]    [c.54]    [c.54]    [c.77]    [c.17]    [c.158]    [c.166]    [c.167]    [c.184]    [c.191]    [c.250]    [c.205]    [c.223]    [c.297]    [c.99]    [c.166]    [c.167]    [c.184]    [c.191]    [c.250]    [c.214]    [c.108]   
Генетика человека Т.3 (1990) -- [ c.234 ]




ПОИСК







© 2025 chem21.info Реклама на сайте