Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенная конденсация пара пересыщение

    Процесс гетерогенной конденсации пара можно разделить на две стадии образование пересыщенного пара и конденсация пара на ядрах конденсации или на газовых ионах с ростом их до размеров капель. [c.15]

    При наличии жидкой фазы того же вещества и при отсутствии в паровой фазе примесей неконденсирующихся газов процесс конденсации начинается при весьма малых пересыщениях и протекает достаточно быстро. В отсутствие жидкой фазы того же вещества конденсация пара возможна при наличии так называемых центров конденсации, роль которых выполняют взвешенные твердые частицы, пылинки, капельки жидкости, ионы газа и т. д. Этот вид конденсации пара получил название гетерогенной конденсации. Гетерогенная конденсация на центрах начинается при некотором пересыщении пара вследствие того, что давление насыщенного пара над выпуклой поверхностью, которую имеют маленькие капельки жидкости (и вообще любые центры конденсации)- больше, чем над плоской . При отсутствии центров конденсация [c.117]


    Процесс гомогенной конденсации пара существенно отличается от гетерогенной конденсации пара и состоит из трех стадий образование пересыщенного пара образование зародышей конденсация пара на поверхности зародышей и их рост до размеров капель тумана. [c.15]

    Охлаждение проводят таким образом, чтобы возникающее пересыщение было недостаточным для гомогенной конденсации пара, но достаточным для конденсации пара на ядрах конденсации (гетерогенной конденсации). [c.284]

    Математическое описание гетерогенного зародышеобразования пока разработано крайне слабо. Зачастую оно относится к фазо-образованию в пересыщенных парах, а не в растворах. Правда, специфические для конденсации паров явления иногда используют для объяснения сущности гетерогенного образования зародышей в растворах. Например, для объяснения снижения работы зародышеобразования при переносе центра кристаллизации из объема на поверхность используются представления о зависимости удельной энергии на границе раздела от природы соприкасающихся фаз [2, 26]. По сути дела речь идет о явлении смачиваемости. Для случая зародышеобразования в растворах такое представление не совсем приемлемо, потому что ни краевых углов смачивания, ни самой картины смачивания мы здесь не наблюдаем. [c.55]

    Поведение зародышей конденсации в системах, находящихся в метастабильном состоянии, легко понять, рассматривая зависимость, представленную на рис. 11.27 и используя уравнение (11.211), отвечающее равновесию в критической, точке. Если степень пересыщения у меньше критической, то возникающие зародыши самопроизвольно испаряются (растворяются). Их размеры меньше критического, поэтому энергия Гиббса понижается с уменьшением размера зародыша. Пересыщенный раствор или пар в этих условиях иногда удобно представить как гетерогенно-дисперсную систему, в которой присутствует множество постоянно образующихся и исчезающих зародышей новой фазы. В критической точке неустойчивость равновесия проявляется в том, что существует равная вероятность возникновения и исчезновения зародышей конденсации. [c.121]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]


    Количественные соотношения для гетерогенной конденсации получают подобным же образом. При этом используют представления о смачивании инородной поверхности ядер конденсации (вследствие громоздкости вывода этих соотношений, он здесь не приводится). Получаемые соотношения позволяют утверждать, что и при гетерогенной кон,п,енсации энергия Гиббса образования зародыша равна одной трети от иоверхностной энергии. Процессы адгезии и смачивания (взаимодействия между новой фазой и инородной поверхностью) снижают энергию образования зародышей, и чем сильнее адгезия и смачивание, тем меньше необходимое пересыщение для конденсацин. Работа гетерогенного зародыше образования из пересыщенного пара во столько раз меньше гомо генного, во сколько объем зародыша — капли на поверхности ядра кондеисации меньи1е объема сферы такой же кривизны. [c.102]

    Изменение состояния пара вдоль АС сопровождается более интенсивным снижением температуры, чем при расширении по кривой насыщетшя. Таким образом, задерн ка конденсацни в ироцессе расширения сопровождается более интенсивным снижением температуры пара пиже температуры насыщения нри данном давлении. Задержка конденсации в высокоградиентных потоках связана с тем, что в газе очень мало ил11 вовсе отсутствуют центры конденсации. Однако состоянне переохлажденного газа не является устойчивым, так как малые возмущения могут привести его в состояние насыщения, которое является абсо.лютно устойчивым. Состояние пересыщения может быть снято либо за счет гетерогенной конденсации на посторонних частицах, либо за счет гомогенной [c.313]

    Для процесса образования гетерогенных активных центров простейшее теоретическое уравнение может быть представлено соотношением Томпсона — Гиббса, однако оно не удовлетворяет условиям, поскольку было доказано, что пересыщенные пары не будут конденсироваться на плоской поверхности, на которой адсорбирован толстый слой жидкости. С другой стороны, положения теории Вольмера [891], экспериментально проверенные Тумеем [873], доказывают, что насыщение по высоте аппарата возрастает при увеличении угла контакта между жидкостью и твердыми частицами. Качественные результаты свидетельствуют о том, что конденсация на увлажненной поверхности твердой частицы начинается при точке росы, а на неувлажненной твердой поверхности — при переохлаждении на 0,015—0,020 °С, что эквивалентно пересыщению около 101%. [c.416]

    Особый интерес представляет поведение системы при к-<0. В этом случае (рис. 10) кривые зависимости К от лежат ниже и левее всех остальных, что показывает снижение пересыш,ений. Каждому значению К>Кт (и соответствуюш,ему пересыщению) также соответствуют две равновесные капли. Первая (меньшая) из них, однако, лежит на восходящей ветви кривой с йК1с1 ( и поэтому устойчива. При малом увеличении объема давление ее паров повышается, и она, испаряясь, восстанавливает исходный объем, а при случайном уменьшении объема капли последний восстанавливается за счет конденсации. Следовательно, эта меньшая капля не является зародышем и возникает в пересыщенной системе спонтанно, безбарьерно, образуя ее исходное состояние I. Таким образом, переход I И, т. е. рост капли до второго неустойчивого состояния на нисходящей ветви кривой с (У )<0, с переходом через состояние с повышенным давлением паров капли, и явится термодинамическим барьером для процесса гетерогенного фазообразования. Следовательно, барьером будет и ско- [c.275]

    Если же пар конденсируется на ядре из другого вещества, то имеет место гетерогенное зародышеобразо-вание, которое проходит в три стадии. Во-первых, пар при расширении должен стать настолько пересыщенным, чтобы происходила его конденсация. Во-вторых, должны образоваться малые молекулярные кластеры, или зародыши. В-третьих, пар должен конденсироваться на зародышах, которые при этом растут, превращаясь в капли. В случае гетерогенного образования капель имеют место только первая и третья стадии. [c.825]

    ДИСПЕРСНЫЕ СИСТЕМЫ, гетерогенные сист. из 2 или более фаз с сильно развитой пов-стью раздела между ними. Одна из фаз образует непрерывную дисперсионную среду, по объему к-рой распределена дисперсная фаза в виде мелких ТВ. частиц, капель или пузырьков. Д. с. с частицами крупнее 10 см обычно наз. грубо дисперсными, с частицами меньших размеров — высокодисперсными, или коллоидными (см. Колломные системы). Сист. с газовой дисперсионной средой — аэрозоли и аэрогели с жидкой — золи, эмульсии, суспензии, пены-, с твердой — сист. типа рубиновых стекол, опала, пеноматериалы. Д. с. могут быть структурированными вследствие возникновения между частицами контактов (см. Структурообразование). Образуются Д. с. в результате конденсации, если возникшие в гомогенной среде (пересыщенном р-ре, паре, расплаве) зародыши новой фазы не могут расти неограниченно, или при диспергировании. [c.181]

    Поглощение трехокиси серы серной кислотой — гетерогенный процесс. Первой его стадией является перенос молекул трехокиси серы к поверхности жидкой фазы. Далее, процесс протекает на поверхности и в объеме жидкой фазы. Протекает также реакция в газовой фазе между трехокисью серы парами воды с образованием парообразной серной кислоты, которая конденсируется на поверхности жидкой фазы. При значительном пересыщении газовой фазы парами серной кислоты происходит ее конденсация в объеме, т. е. образуется туманообразная серная кислота, почти не улавливаемая поглощающими жидкостями. Поэтому для поглощения трехокиси серы нельзя применять воду или разбавленные водные растворы серной кислоты. Для того чтобы избежать образования тумана и добиться высокой степени связывания трехокиси серы, ее поглощают азеотропной смесью, содержащей 98,3% Н2304 и 1,7% НгО. Давление паров воды над такой смесью ниже, чем над любым более разбавленным раствором. Над более концентрированными растворами давление паров серной кислоты выше. [c.405]



Смотреть страницы где упоминается термин Гетерогенная конденсация пара пересыщение: [c.190]    [c.98]    [c.357]    [c.357]    [c.38]    [c.190]    [c.277]   
Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная конденсация пара

Конденсация пара

Пересыщение

Пересыщение пара

Пересыщение паров



© 2025 chem21.info Реклама на сайте