Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пересыщение раствора, пара

    Степень устойчивости разных состояний в физико-химических системах может быть весьма различной. Состояния, отвечающие небольшой относительной устойчивости, называются ме-тастабильными. Обычными примерами метастабильных состояний могут служить состояния пересыщенного пара, пересыщенного раствора, переохлажденной жидкости и т. д. Переход в более устойчивые состояния может быть вызван в этих системах весьма слабыми воздействиями. Так, можно вызвать кристаллизацию растворенного вещества из пересыщенного раствора, внеся небольшой кристаллик растворенного вещества. [c.226]


    Методы конденсации. 1. Метод замены растворителя заключается в том, что истинный раствор вещества добавляется к жидкости, смешивающейся с растворителем, но в которой само вещество мало растворимо и выделяется в виде высокодисперсной фазы. 2. Метод конденсации из паров основан на одновременной конденсации паров диспергируемого вещества и растворителя на холодной поверхности. 3. Химические методы конденсации основаны на переводе растворенных веществ в нерастворимое состояние при помощи различных химических реакций (восстановление, гидролиз, двойной обмен и др.) с последующей агрегацией и рекристаллизацией нерастворимых частиц, образующих дисперсную фазу. Образование новой фазы происходит из пересыщенного раствора в результате роста частиц на центрах или зародышах кристаллизации. Стабилизаторами являются растворимые вещества, возникающие в результате химической реакции. [c.262]

    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]

    Самопроизвольный переход вещества в твердую фазу возможен при некотором пересыщении или переохлаждении отвердевающей фазы. Как известно, пересыщение пара достигается при некотором давлении Р, превышающем давление насыщенного пара Рнас Р — Рнас= Р, где АР — величина пересыщения. Степень пересыщения выражается отношением Р/Рнас = У- Точно так же пересыщение раствора представляет собой разность С —Снас=АС, где С — концентрация пересыщенного раствора С ас — равновесная концентрация твердого вещества (его растворимость). [c.144]


    Обычно соосаждение проводят в системе, которая находится в электрическом, магнитном и гравитационном полях и имеет теплопроводящие стенки. В начальный момент соосаждения имеется пересыщенный раствор (пар), который содержит примесь и находится в тепловом равновесии с внешней средой. [c.47]

    Традиционный подход дает хорошие результаты при стационарном, полустационарном, квазиравновесном или равновесном захвате крупными кристаллами. Сорбция примеси крупными кристаллами определяется единственным параметром — эффективным коэффициентом захвата примеси К. . Если стационарную сокристаллизацию осуществляют путем введения малого количества затравочных кристаллов в большой объем пересыщенного раствора (пара), содержащего примесь (см. разд. 5.1), то коэффициент захвата [c.239]

    Экстракт, пересыщенный растворите- Перегретый пар [c.92]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    Явление пересыщения было установлено (1795) впервые Т. Е. Ловицем, который открыл существование пересыщенных растворов и изучал их. Состояния пересыщенного пара, перегретой или переохлажденной жидкости, пересыщенного раствора и другие подобные им являются метастабильными состояниями ( 83). Возможность существования их связана с затруднениями в возникновении зародышей новой фазы, так как очень малый (в первый момент) размер выделяющихся частичек новой фазы увеличивает изотермические потенциалы вещества и делает эти частички менее устойчивыми. С этим же в большей или меньшей степени связана и сохраняемость метастабильных кристаллических фаз и стеклообразного состояния. [c.360]

    Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в ме-тастабильном состоянии, например,кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой, метастабильной. Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты работы, - стадию образования зародышей новой фазы, отделенных от старой фазы поверхностью раздела. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуются местные пересыщения - флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения. [c.39]

    На рис. 167 представлена тип-ичная кривая изменения скорости со временем для процессов, в которых отсутствуют готовые зародыши новой фазы, и следовательно, возможно значительное пересыщение. Это может иметь место и прн кристаллизации из переохлажденной жидкости илн из пересыщенного раствора, и при конденсации жидкости из пересыщенного пара, и в химических реакциях, сопровождающихся выделением новой фазы. [c.491]

    Степень пересыщения для пара и раствора выражается соотношениями [c.99]

    В этих методах главным моментом является образование в системе зародышей новой фазы. Такие зародыши образуются в пересыщенных системах, где концентрация одного молекулярно-диспергированного компонента выше той концентрации, которая соответствует равновесию между молекулярно-диспергированным и конденсированным состояниями этого компонента (см. гл. 4). Таковыми являются пересыщенные растворы, переохлажденные пары и др. [c.9]


    Конденсация может протекать как химический и как физический процесс, И в том и в другом случае метод конденсации основан на образовании в гомогенной среде новой фазы, имеющей коллоидную дисперсность. Общим условием образования новой фазы является состояние пересыщения раствора или пара. При возникновении местных пересыщений в каких-то участках раствора образуются агрегаты из нескольких молекул, которые и становятся зародышами новой фазы. Роль зародышей могут выполнять имеющиеся или вносимые в систему центры кристаллизации — пылинки, небольшие добавки готового золя и др. Чем больше число центров кристаллизации и меньше скорость роста кристаллов, тем выше дисперсность получаемых золей. [c.410]

    Термодинамически равновесное состояние системы является в то же время истинным равновесием. Оно характеризуется тем, что бесконечно малые воздействия на систему вызывают бесконечно малые изменения в ней. Если это условие не выполняется, система находится в ложном (или неустойчивом) равновесии. В качестве примера систем, находящихся в состоянии ложного равновесия, можно назвать пересыщенные растворы, переохлажденные жидкости, переохлажденный пар при обычных условиях. [c.49]

    Пересыщенный пар, пересыщенный раствор, переохлажденная жидкость представляют собой метастабильную фазу. Переход из метастабильного состояния в стабильное, сопровождающийся уменьшением энергии Гиббса, всегда самопроизволен, за исключением стадии образования кристаллических зародышей. Изменение энергии Гиббса АО, Бызвашюе появлением зародыша новой фазы радиуса г, равно  [c.362]

    При построении количественной теории образования трехмерных и двумерных зародышей в процессе электрокристаллизации металлов исходят из представлений о механизме возникновения новой фазы из пересыщенных раствора или пара, согласно которым работа образова- [c.313]

    При построении количественной теории образования трехмерных и двумерных зародышей в процессе электрокристаллизации металлов М. Фольмер и Т. Эрдей-Груз исходили из представлений о механизме возникновения новой фазы из пересыщенных раствора или пара, согласно которым работа образования зародыша новой фазы тем меньше, чем меньше его размеры. Однако с уменьшением размеров зародыша возрастает химический потенциал слагающего его компонента, поскольку при малых размерах зародыша относительно велико число поверхностных атомов, обладающих повышенной энергией. При образовании новой фазы в равновесных условиях химические потенциалы каждого компонента в обеих фазах должны быть равны. Для выполнения этого условия необходимо повысить химический потенциал компонента в материнской фазе, что достигается при пересыщении раствора или пара по данному компоненту. Пересыщение — главная особенность процесса образования новой фазы. Степень пересыщения и размеры элемента новой фазы, который при этом может возникнуть и служит зародышем для роста больших кристаллов или капель, оказываются взаимосвязанными. Так, при образовании капель жидкости из пересыщенного пара радиус г капли определяется соотношением Томпсона  [c.328]

    Скорость перехода вещества из одного фазового состояния а другое зависит от скорости подвода и отвода теплоты. Однако при некоторых условиях фазовый переход может быть кинетически заторможен, и поэтому получаются перегретые или переохлажденные жидкости и пересыщенные растворы. Состояния переохлажденного газа (пара) или перегретого кристалла не наблюдаются. [c.12]

    Классическими примерами метастабиль-ного состояния служат состояния пересыщенного пара, переохлажденной жидкости или пересыщенного раствора. Механической 26. Схема различ- [c.119]

    Примером систем, находящихся в ложном (или метастабильном) равновесии, являются пересыщенные растворы, переохлажденные жидкости, пересыщенный пар при обычных условиях н т. п. [c.199]

    Состояния, отвечающие небольшой относительной устойчивости, называют также метастабильными. Примером систем, находящихся в ложном (или мета-стабильном) равновесии, являются пересыщенные растворы, переохлажденные жидкости, пересыщенный пар при обычных условиях и т. п. [c.232]

    Современные теории образования зародышей основаны на взглядах Д. Гиббса, развитых в дальнейшем М. Фольмером. В СССР этот вопрос плодотворно разрабатывался Я- И. Френкелем. Теория Гиббса сводится к следующему. Образование кристаллических зародышей происходит при переходе системы из метастабильного состояния в устойчивое. Примерами метастабильного состояния являются состояния пересыщенного пара, пересыщенного раствора, переохлажденной или перегретой жидкости. В метастабильном состоянии данная фаза может существовать неопределенно долгое время без всяких изменений, пока в этой фазе не появится зародыш другой фазы, например капелька жидкости в пересыщенном паре, центр кристаллизации в переохлажденной жидкости или пересыщенном растворе. Такое состояние может быть названо относительно устойчивым. Переход метастабильной фазы в стабильную всегда сопровождается уменьшением свободной энергии, всегда является самопроизвольным за исключением стадии образования зародышей. Возникновение зародышей связано с затратой свободной энергии на создание новой поверхности раздела фаз стабильной и метастабильной. Так как процесс перехода метастабильной фазы в стабильную на стадии образования зародыша сопровождается увеличением свободной энергии, то он не может происходить самопроизвольно до тех пор, пока зародыш не достигнет определенной величины. После этого переход совершается сам собой. Таким образом, для того чтобы вывести метастабильную фазу из относительно устойчивого состояния, необходимо затратить некоторую работу. Гиббс нашел способы для вычисления такой работы. [c.231]

    Пересыщенный раствор аналогичен переохлажденной жидкости и переохлажденному пару. [c.145]

    В некоторых случаях (переохлажденная жидкость пар, пересыщенный раствор пар и др.) имеются все внешние признаки равновесия фаз, но изобарный потенциал системы не имеет минимального абсолютного значения и поэтому способен уменьшаться далее. Равновесия в таких системах называются метастабильными. Например, вода, охлажденная ниже 0° С, может сохраняться жидкой неопределенно долгое время, причем давление пара воды при Т = onst будет постоянным. Но как только внести в переохлажденную воду малейший кристаллик льда ( затравку ), то начинается быстрая кристаллизация, температура поднимается до 0° С и через некоторое время устанавливается новое постоянное давление пара. Переход в состояние истинного равновесия сопровождается понижением изобарного потенциала. Система, которая сама по себе устойчива и становится неустойчивой только при соприкосновении с определенной фазой, называется метастабильной. Метастабильные равновесия возможны только в области определенных температур и давлений (метастабильная об- [c.156]

    Механическое возмущение может вызвать в пересыщенном растворе появление пары пузырек- кристалл. Это явление легко наблюдать экспериментально в условиях воздействия мощного ультразвука на раствор в зоне кавитации к поверхности раствора поднимаются пузырьки, а на дно падают кристаллы. При слабых докавитационных полях пузырек не вырастает, вновь растворяясь, а кристаллический зародыщ при наличии пересыщения продолжает расти. [c.148]

    Образование поверхности требует затраты работы, и поэтому получение врИ1еств с сильно развитой поверхностью осуществляют большей частью из сильно пересыще1гного состояния (см. 143 — пересыщенных раствора или пара, переохлажденной жидкости или в результате применения большой плотности тока при электролизе н т. д. — т. е. в условиях, далеких от равновесия. Это играет большую роль при получении коллоидных систем. Кроме гого, этот фактор имеет большое значение для получения активных катализаторов. Для сохранения веществ в состояниях с сильно развитой поверхностью нередко приходится прибегать к искусственной стабилизации. [c.359]

    Однако наряду с этим имеется немало процессов, при которых возникает новая фаза, как, например, при выделении растворенного вещества из пересыщенного раствора, при конденсации жидкости из пересыщенного пара в его объеме или при кипении жидкости (образовании пузырьков пара внутри объема жидкости) и при протекании соответствующих химических реакций. Во всех этих случаях новая фаза возникает первоначально в виде частиц очень малого размера, и это может вносить весьма существенные усложнения в ход процесса. [c.490]

    Общим для обеих этих груии методов является то, что выделение или образование вещества коллоида в новой фазе производят в условиях сильного пересыщения, т. е. из сильно иересыщен-ного пара, из сильно пересыщенного раствора и т. д. В таких условиях выделение зародышей частиц новой фазы может происходить одновременно в очень большом числе точек. Эти зародыши служат центрами конденсации или кристаллизации. Условия проведения процесса подбираются такими, чтобы рост образовавшихся капелек жидкости или кристалликов прекращался, когда они достигнут размеров коллоидных частиц. При этом с помощью тех или других стабилизаторов предотвращают соединение этих капелек ми кристалликов,.в более крупные агрегаты. [c.530]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Образование пересыщенного раствора или пара может быть осуи.1,сств. ]ено иосредством его охлаждения по всему объему илн с поверхности, соприкасающейся с холодными телами. [c.190]

    Конденсация в результате химической реакции. Конденсация вещества, которая происходит при некоторых химических реакциях в жидкой ILTH газово срс.чах, является, подобно конденсации при охлаждении растворов или паров, непосредственным следствием предварительного пересыщения раствора или воздуха обра-зовавишмся продуктом реакции. Очевидно, что образующийся 8 результате реакции продукт пересынгает раствор или пространство в случае, если он получается в концентрации, превышающей соот- [c.190]

    Метастабильное состояние устойчиво относительно малых воздействий, так как оно при соблюдении мер предосторожности может сохраняться сколь угодно долго. Однако относительно конечных воздействий оно неустойчиво. Известными примерами этого состояния служат переохлажденные жидкость и пар, пересыщенный раствор и т. д. В результате конечных воздействий система, нахо дящаяся в метастабильном состоянии, может перейти в стабильное состояние через ряд метастабильных состояний или непосредственно. При этом энтропия возрастает на конечную величину и достг гает наибольшего значения из всех возможных при заданных зн [c.200]

    Свойства растворов электролитов. Растворы электролитов в зависимости от. их концентрации характеризуются различными свойствами, что связано с качественными изменениями при переходе от одной области концентраций к другой. Растворы в пре-, дельно разбавленном состоянии с бесконечно малой концентрацией растворенного вещества приобретают свойства идеального раствора. Степень диссоциации (отнощение числа продиссоцииро-вавших чзотиц к их общему числу) здесь равна единице, и в растворе в качестве частиц растворенного вещества выступают ионы. В растворах средних и высоких концентраций наряду с ионами могут образовываться молекулы, ассоциаты, ионные пары (см. с. 231) и т. п., которые вызывают появление новых свойств. Еще сложнее обстоит дело с неустойчивыми пересыщенными растворами. [c.225]

    Из свойств водных растворов в технологии наиболее часто оперируют такими, как концентрация, растворимость газов и твердых веществ, их пересыщение, давление пара летучих компонентов раствора, плотность, вязкость, электрическая проводимость, энтальпия, а из ионно-молекулярных структурных характеристик — активность ионов водорода. Другие характеристики — активность всех компонентов, фактический ионно-молекулярный состав, изменение энтропии, а также температурноконцентрационные коэффициенты свойств в интегральной и дифференциальной формах —применяют при теоретической оценке вклада реальных химических взаимодействий в изменение свойств раствора. [c.74]


Смотреть страницы где упоминается термин Пересыщение раствора, пара: [c.190]    [c.101]    [c.638]    [c.160]    [c.295]    [c.314]    [c.314]    [c.196]    [c.56]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.192 , c.193 , c.196 , c.201 , c.202 , c.206 , c.207 , c.216 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Пересыщение

Пересыщение пара

Пересыщение паров

Пересыщение растворов раствором

Растворы пары



© 2025 chem21.info Реклама на сайте