Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бета-распад вероятность

    Очень вероятно, что термический крекинг м-пропилбензола заключается в свободнорадикальном отщеплении атома водорода от метильной группы, с последующим бета -распадом на бензиловой радикал и этилен. Далее происходит развитие цепи за счет взаимодействия бензила с исходной структурой с образованием толуола и нового радикала. Попутно заметим, что термический крекинг ароматических углеводородов весьма сходен энергетически с крекингом некоторых алифатических углеводородов, если бензил рассматривается как энергетический аналог аллило-вого радикала в следующей структуре (используются данные из [39]). [c.131]


    В соответствии с теорией Ферми, можно предсказать как вероятность распада, так и форму бета-спектра. Вероятность распада обычно выражают через постоянную распада X или среднюю продолжительность жизни т каждую из этих величин можно получить с помощью интегрирования уравнения (11-19) по всем возможным значениям кинетической энергии, т. е. [c.404]

    Точно так же, как и в атомном спектре определённые переходы осуществляются, а другие — запрещены, мОжно говорить о разрешенных и запрещенных переходах при бета-распаде. Вместо того чтобы говорить о действительном запрете, более точно было бы сказать, что переходы между одними ядерными уровнями более вероятны, чем между другими. Более вероятные переходы называют разрешенными переходами, а менее вероятные — в большей или меньшей степени запрещенными. Наиболее ярким показателем существования этой степени запрещенности является период полураспада бета-эмиттера. Период полураспада для [c.404]

    В 1934 г. Ферми разработал свою теорию бета-распада для объяснения неожиданных результатов наблюдений, свидетельствующих о том, что некоторый радиоактивные ядра испускают электрон в процессе радиоактивного распада, хотя предполагалось, что они состоят лишь из протонов и нейтронов. Ферми отметил, что атомы испускают фотоны при переходе из одного квантового состояния в другое, хотя в то время и не предполагали, что атомы содержат фотоны считали, что фотон возникает в момент его испускания. Ферми предположил, что электроны, бета-частицы, образуются при радиоактивном распаде ядра и что одновременно один из нейтронов внутри ядра становится протоном и при этом испускается нейтрино (или, что более вероятно, антинейтрино). [c.597]

    Вероятность двойных бета-распадов или 2/5-переходов, являющихся процессами второго порядка (в стандартной теории), пропорциональна четвёртой степени константы слабого взаимодействия Этим объясняются большие наблюдаемые значения периодов полураспада — Т1/2 > лет. Детектирование столь редких реакций составляет сложную экспериментальную задачу. Чувствительность экспериментов по двойному бета-распаду прямо пропорциональна количеству ядер распадающегося изотопа, используемого в экспериментальной установке, поэтому для измерений выгодно использовать максимально обогащённые изотопы. Эксперименты по 2/3-распаду требуют значительных количеств, от десятков граммов до сотен килограммов, стабильных изотопов с высокой степенью очистки от радиоактивных примесей. [c.34]


    Ординарная алифатическая связь между двумя углеродными атомами примерно в 1,5 раза слабее двойной и в 2 раза слабее тройной связи. Энергия ординарных связей в прямой и боковой цепях меньще, чем в цикле гидроароматических углеводородов, и еще меньще, чем в цикле ароматических. При термическом воздействии прочность молекулы, в составе которой имеются фенильные группы, снижается по мере усложнения. Разрыв такой молекулы происходит прежде всего по месту ординарной углеродной связи. Энергия разрыва по связи С-С, находящейся в бета-положении от двойной связи или от ароматических заместителей, ниже, чем в альфа-положении. Чем больще межатомные расстояния и несимметричнее структура, тем меньще прочность молекулы и тем вероятнее ее распад по месту наиболее слабой связи, т. е. тем она реакционноспособнее. [c.158]

    Вероятно, в дальнейшем радиоактивные нуклиды в качестве меченых атомов будут наиболее широко применяться в биологии и медицине. В человеческом организме содержится такое большое количество соединений, включающих многие элементы — углерод, водород, азот, кислород, серу и др., что состояние, в котором находится органическое вещество, определить крайне трудно. Однако если в состав того или иного органического соединения ввести радиоактивный нуклид, то за перемещением его в организме можно наблюдать путем измерения радиоактивности. Для этой цели особенно пригоден радиоактивный нуклид углерод-14, имеющий период полураспада около 5000 лет. Он подвергается медленному распаду с испусканием бета-лучей, и количество данного изотопа в образце можно определить, измеряя бета-активность. Большие количества С можно легко получить в ядерном реакторе при действии на азот медленных нейтронов uN-fJn- 1 с + 1Н [c.616]

    Поскольку а-частица уносит с собой положительный электрический заряд, то при вылете из ядра она должна преодолеть потенциальный куло-новский барьер. Вероятность её туннелирования через него сильно (экспоненциально) зависит от энергии вылетающей частицы, в результате чего для разных ядер период полураспада может изменяться в очень широких пределах. Например, период полураспада для Ро составляет 3 10 с, а для изотопа Се и ряда других — более, чем 10 лет. Отметим, что на вероятность распада в ряде случаев влияет и существование другого барьера — центробежного, возникающего, если частица покидает ядро с отличным от нуля угловым моментом. Энергия связи а-частиц i—Q) практически для всех бета-стабильных ядер с Л > 150 отрицательна, т. е. все такие ядра должны быть радиоактивны. Однако во многих случаях их время жизни слишком велико и а-распад наблюдать не удаётся. [c.27]

    Первый — химическое выделение радиоактивных изотопов из топлива ядерных реакторов, которое некоторое время прослужило источником энергии — так называемое облучённое ядерное топливо . Поскольку тяжёлые ядра в реакторах деления распадаются на осколки средних масс, то таким образом целесообразно получать радиоактивные изотопы с массовыми числами, близкими к наиболее вероятным массовым числам осколков — 90 и ПО. Другой — тоже реакторный — способ получения бета-активных изотопов заключается в облучении стабильных изотопов нейтронами при размещении мишени в активной зоне реактора. Добавление нейтрона к стабильному ядру может сделать его радиоактивным. Третий путь — как правило более дорогой и менее производительный, чем реакторные способы, — получение радиоактивных изотопов путём облучения мишени пучком ускоренных протонов. [c.30]

    Вероятно, наиболее широкое применение в качестве меченых атомов изотопы будут и впредь находить в области биологии и медицины. В человеческом организме содержатся такие большие количества элементов — углерода, водорода, азота, кислорода, серы и др., что очень трудно определить состояние органического вещества в нем. Но если в состав органического соединения ввести радиоактивный изотоп, то за перемещением такого соединения в организме уже можно наблюдать путем измерения радиоактивности. Для этой цели особенно пригоден радиоактивный изотоп углерод-14, имеющий период полураспада около 5000 лет. Он подвергается медленному распаду с испусканием бета-лучей, и количество данного изотопа в образце можно определить, измеряя бета-активность. Большие количества этого изотопа легко можно приготовить в ядерном реакторе при действии на азот медленных нейтронов [c.736]

    Когда радиоактивный образец распадается с испусканием альфа-или бета-лучей, после распада обычно следует испускание гамма-лучей. Это значит, что первоначальный распад оставляет ядро в возбужденном состоянии. При этом более вероятно, что возбужденное ядро не перейдет в свое основное состояние при испускании единичного фотона. Фактически оно может достигнуть окончательного основного состояния путем испускания довольно большого числа фотонов. Каждый из этих фотонов будет результатом перехода между двумя энергетическими состояниями конечного ядра, и если бы можно было определить энергии различных переходов, то тем самым были бы найдены и относительные энергии уровней. [c.392]


    К разрешению этой дилеммы можно подойти двумя путями. Во-первых, можно предположить, что законы сохранения, такие, как, например закон сохранения количества движения, недействительны для микротел (для ядра). Во-вторых, можно предположить, что распад в действительности включает третью, пока еще не названную частицу, способную уносить оставшуюся энергию. Эта последняя идея была выдвинута в 1927 г. Паули и в дальнейшем использована Ферми в его формулировке теории бета-распада. Эта новая частица была названа нейтрино, и, для того чтобы удовлетворить известные законы сохранения и объяснить еще не исследованную природу частицы, необходимо было приписать ей отсутствие заряда, очень малый магнитный момент, очень близкую к нулю массу покоя, спин, равный половине, и соответствие статистике Ферми — Дирака. Вероятность взаимодействия с веществом частицы без заряда, магнитного момента или массы покоя практически равна нулю. Действительно, было подсчитано, что если единственной реакцией нейтрино является процесс [c.403]

    Измерение интенсивности двухнейтринной моды двойного бета-распада, причём сколь возможно более точное, нужно для верификации теоретических расчётов этого процесса [58] и для оценки вероятности связанного с ним искомого безнейтринного распада. Период полураспада ядра по двухнейтринному каналу определяется следующим выражением О  [c.34]

    Напротив, г-процесс не ограничивает образования элементов более тяжелых, чем В1 с 2=83, поскольку скорость нейтронного захвата почти совпадает со скоростью радиоактивного распада любого нуклида. Нуклид в оботаш,енном нейтронами веществе (где плотность нейтронов выше см ) будет захватывать нейтрон за нейтроном до тех пор, пока энергия нейтронной связи не станет настолько низкой, что новый, обогащенный нейтронами нуклид не сможет удержать дополнительные нейтроны. В этом состоянии он будет ледать , пока ие произойдет бета-распад, в результате которого увеличится заряд ядра и станет возможным, как и прежде, дальнейший захват нейтронов. Из-за энергетики нейтронных связей состояния ожидания будут характерны для ядер с четным числом нейтронов. Они являются обогащенными нейтронами прародителями, которые в свое время распадутся с образованием стабильных изотопов, зачастую относительно богатых нейтронами. Временной интервал между последовательными захватами нейтронов в г-процессе, вероятно, колеблется от 0,1 до 1 с. Процесс ограничивается ядерным делением, которое начинается с А=276, а продукты деления попадают обратно в цикл, приводя к появлению пиков на спектре распространенности с А = 130, А=195. Главными нуклидами, которые образуются в г-процессе, являются, таким образом, нуклиды, с атомными массовыми числами между 76 и 204. Эффект г-процесса может также значительно ослаблять фотодезинтеграция при высоких температурах. [c.47]

    Когда радиоактивный образец распадается с испусканием альфа-или бета-лучей, то после распада обычно следует испускание гамма-лучей. Это значит, что первоначальный распад оставляет конечное ядро в возбужденном состоянии. При этом более вероятно, что возбужденное ядро не перейдет в свое основное состояние с помощью испускания единичного фотона. Фактически оно может достигнуть окончательного основного состояния с помощью испу- [c.410]

    Обычно число регистрируемых счетчиком частнц не равно числу актов распада в препарате. Это происходит вследствие ограниченности телесного угла, под к-рым счетчик виден со стороны препарата, вследствие поглощения частиц в окошке счетчика п воздухе, самопоглощения и саморассеяния в препарате, рассеяния от подложки, а также вследствие того, что вероятность регистрации частиц, попавших в счетчик, может быть не равна 100%. Поэтому иамеретш числа актов распада в препарате, т. е. абс. измерения, требуют применения специальной аппаратуры и особым образом приготовленных источников излучения (пример 4л -счетчики р-частиц, внутрь к-рых помещают чрезвычайно тонкие препараты, в к-рых не происходит самопоглощение р-частиц, см. далее). Были предложены также методы абс. счета активности (напр., метод определенного телесного угла), основанные на введении большого числа поправок (на телесный угол, поглощение, рассеяние), учитывающих перечисленные выше факторы. Наиболее точные определения абс. активности производят с использованием счетчиков с телесным углом 2я или 4я, в к-рых препарат располагают т. обр., чтобы в рабочий объем счетчика попадала половина или все испущенные частицы. Газонаполненные счетчики и ионизационные камеры применяют для определения абс. активности а- и р-активных изотопов, сцинтилляционные счетчики — для счета по рентгеновскому и у-излучению. С большой точностью абс. активность ряда изотопов можно определить по т. наз. методу бета-гамма совпадений. Измерения производятся двумя бета- и гамма-счетчиками. Электронная схема позволяет измерять число р-частиц, попавших в единицу времени в бета-очетчик (iVr,). число у> вантов, сосчитываемых в единицу времени гамма-счетчиком <]Y. ), а также число частиц одновременно регистрируемых обоими счетчиками, Аб- [c.226]

    К этому времени профессор Сегрэ пытался также синтезировать элемент 61. Между тем стало ясно, что оба соседа этого элемента по периодической системе, неодим и самарий, слабо радиоактивны. Сначала это казалось удивительным, так как в то время считали, что радиоактивность присуща наиболее тяжелым элементам. Неодим, 60-й элемент, излучал бета-лучи, следовательно, должен был превращаться в элемент 61. Тот факт, что этот неизвестный химический элемент до сих пор не могли выделить, вероятно, объяснялся его быстрым радиоактивным распадом. Что же делать Здесь выход заключался опять-таки в искусственном получении искомого элемента. Раз элемент 61 нельзя было найти в природе, физики попытались его синтезировать. [c.140]


Смотреть страницы где упоминается термин Бета-распад вероятность: [c.477]    [c.395]    [c.404]    [c.480]    [c.536]    [c.395]    [c.404]    [c.377]    [c.385]    [c.386]    [c.395]    [c.404]    [c.80]    [c.46]    [c.377]    [c.385]    [c.386]   
Теоретическая неорганическая химия (1969) -- [ c.404 , c.407 ]

Теоретическая неорганическая химия (1971) -- [ c.386 , c.389 ]

Теоретическая неорганическая химия (1969) -- [ c.404 , c.407 ]

Теоретическая неорганическая химия (1971) -- [ c.386 , c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Бета-распад

Вероятность

Вероятность распада



© 2024 chem21.info Реклама на сайте