Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм гомогенного

    Кислотно-основные свойства катализаторов. Сведения о кислотности часто необходимы при оценке свойств катализаторов. Активность и селективность катализаторов в реакциях крекинга органических соединений, изомеризации, полимеризации, дегидратации и других находятся в непосредственной связи с их кислотными свойствами. В настоящее время общепризнанным является принцип родственности механизмов гомогенного и гетерогенного кислотного катализа. Поэтому, по аналогии с гомогенным катализом, в гетерогенном катализе используются такие понятия, как кислота Бренстеда , кислота Льюиса и, соответственно, бренстедовские и льюисовские кислотные центры. Однако вопросы структуры кислотных точек на поверхности катализаторов, возможность перехода одного типа кислотных центров в другой, а также их влияние на поведение катализатора в процессе все еще остаются дискуссионными. [c.381]


    Таким образом, в гетерогенном катализе окисления меркаптанов, во-первых, исключается разрушение катализатора в щелочной фазе, во-вторых, поверхность раздела фаз, где протекает реакция окисления, образуется развитой поверхностью носителя катализатора, а не интенсивным перемешиванием фаз, как в случае гомогенного катализа. Очевидно, что механизм реакции окисления высокомолекулярных меркаптанов на гетерогенном катализаторе не будет сильно отличаться от механизма гомогенного окисления, поэтому в этом разделе работы основное внимание будет уделено рассмотрению технологических аспектов процесса демеркаптанизации дистиллятов нефти. [c.64]

    В целом на основании этих физико-химических механизмов можно ожидать суммарных эффектов ускорения более чем в 10 раз. Как видно, это вполне покрывает тот масштаб ускорений, который отличает ферментативный катализ от механизмов гомогенно-каталитического типа (см. гл. I). [c.69]

    Как объясняет теория промежуточных соединений механизм гомогенного катализа  [c.57]

    Обычно зарождение цепей в окисляемых углеводородах происходит по обоим механизмам — гомогенному и гетерогенному. Вклад каждого механизма в суммарную скорость зарождения цепей зависит от условий окисления — соотношения объема углеводорода и поверхности реактора, скорости диффузии кислорода к поверхности металла и т. ц. Так, например, при длительном хранении топлив в больших резервуарах зарождение цепей будет происходить преимущественно по гомогенному механизму. При жидкофазном окислении топлива в реакторе в условиях интенсивного перемешивания смеси и барботирования кислорода зарождение цепей с большей вероятностью происходит по гетерогенному механизму. Гетерогенный механизм зарождения цепей остается постоянным при окислении углеводородов как в газовой, так и в жидкой фазе. Иначе обстоит дело при гомогенном зарождении цепей. [c.29]

    В условиях хранения и эксплуатации углеводородное топливо С растворенным в нем кислородом находится в контакте с металлической поверхностью стенками баков для хранения, трубопроводов, насосов. Известно, что металлы, их оксиды и соли катализируют окисление углеводородов. В связи с этим необходимо определить влияние поверхности конструкционных материалов на окисление топлива в условиях хранения соотношение между процессами окисления топлива в объеме и на стенке стадии окисления, на которые воздействует металлическая стенка ингибиторы, которые следует применять для стабилизации топлива в присутствии металлической поверхности и др. Наряду с гетерогенным катализом в топливе. может протекать и гомогенный окислительный катализ, вызываемый растворенными в нем солями металлов. Роль металлов в окислении углеводородов неоднократно исследовалась. Достаточно подробные данные имеются о механизме гомогенного катализа окисления углеводородов растворенными солями жирных кислот. [c.192]


    Вода и растворы замерзают в капиллярах только после сильного переохлаждения (до температуры от —30 до —40°С) по механизму гомогенной кристаллизации в связи с высокой [c.104]

    Радикальный механизм гомогенного катализа возможен как в газовой, так и в жидкой фазе. Катализатор служит инициатором, направляющим реакцию по цепному механизму. Ускорение достигается в результате появления богатых энергией частиц — свободных радикалов в процессе самой реакции. По такому механизму протекают некоторые окислительные реакции в газах, полимеризация в жидкой фазе и т. п. Типичным примером газофазной каталитической реакции радикального типа моя<ет служить действие оксидов азота на окисление алканов, в частности метана в формальдегид. Взаимодействие метана с оксидами азота вызывает цепную реакцию с относительно легким зарождением цепей и высокой скоростью их обрыва. Механизм этого процесса можно представить упрощенно следующей цепью реакций  [c.222]

    О сложности действительного механизма гомогенно-каталитических реакций, в частности, свидетельствует различное действие катализаторов в начальный и в последующие по ходу реакции моменты времени (см. 38). Эта особенность действия гомогенных катализаторов характерна для так называемых цепных реакций (см. главу XI) с их сложным химическим механизмом. Следует указать, что во многих реакциях роль гомогенного катализатора обычно сводится к инициированию реакции, т. е. к созданию активных промежуточных веществ. Известны так ке случаи, когда катализатор не только ускоряет реакцию, но и изменяет ее направление, т. е. вызывает преимущественное образование какого-либо определенного продукта. [c.18]

    Рассмотрим два примера вероятного механизма гомогенного катализа в растворах при гетеролитическом разрыве связей. [c.414]

    Механизм гетерогенных реакций существенно отличается от механизма гомогенных реакций прежде всего тем, что последние протекают по всему объему реакционной смеси V, в то время как гетерогенные — на межфазовой поверхности (границе) раздела 5. Этот специфический механизм гетерогенных реакций часто называют макрокинетическим механизмом, поскольку он рассматривает особенности протекания химической реакции в целой физико-химической системе, не затрагивая молекулярного уровня процесса. [c.54]

    Гомогенный катализ. Механизм гомогенного катализа хорошо объясняется теорией промежуточных химических соединений. По этой теории катализатор с реагирующим веществом образует неустойчивое реакционноспособное промежуточное соединение. Энергия активации этого процесса ниже энергии активации некаталитической основной реакции. В дальнейшем промежуточное соединение распадается или реагирует с ноной молекулой исходного вещества, освобождая при этом катализатор в неизмененном виде. Эти превращения также характеризуются сравнительно малой энергией активации. [c.215]

    Установлено, что при закачке растворов НПАВ на высокоминерализованной пластовой воде может протекать химическая деструкция по механизму гомогенного катализа с участием гидра- [c.52]

    Гомогенный кат из. Для объяснения механизма гомогенного катализа наибольшее распространение получила теория промежуточных соединений, предложенная французским химиком Сабатье и развитая в работах Н. Д. Зелинского и его школы. Согласно этой теории катализатор реагирует с исходными веществами, образуя нестойкие промежуточные соединения, последующие превращения которых приводят к образованию нужных продуктов реакции и регенерации катализатора. [c.143]

    МЕХАНИЗМЫ ГОМОГЕННОГО КАТАЛИЗА [c.256]

    Таким образом, механизм гомогенного катализа в растворах возможен на основе как молекулярных, так и ионных промежуточных соединений. Большое значение имеет комплексообра-зование в водных и неводных растворах. Снижение энергии активации объясняется тем, что образование связи при взаимодействии с катализатором уменьшает энергии связи соседних атомов, облегчает их разрыв и образование переходного состояния. Кроме того, ориентирующее действие катализатора способствует выполнению требования строгой координации структуры и движений в переходном состоянии, что снижает энтропию активации. [c.291]

    Механизм действия катализаторов различен. Для объяснения механизма гомогенного катализатора используют теорию промежуточных соединений, согласно которой реакция [c.26]

    Механизм- гомогенного катализа, по-видимому, может быть объяснен с помощью образования промежуточных нестойких соединений. Основные взаимодействующие вещества А и В реагируют между собой с малой скоростью. Введение в систему катализатора К вызывает образование промежуточного нестойкого продукта АК, который энергично взаимодействует со вторым компонентом, образуя АВ с регенерацией катализатора. Совокупность всех процессов можно записать с помощью следующих схем  [c.164]


    Большинство исследователей склонны считать, что основной теорией, объясняющей механизм гомогенного катализа, является теория образования промежуточных соединений. [c.97]

    Большинство исследователей склонно считать, что основной теорией, объясняющей механизм гомогенного катализа, является теория образования промежуточных соединений. Это положение находит ряд экспериментальных подтверждений в связи с тем, что во многих случаях гомогенного катализа, пользуясь тонкими методами исследования (спектральный анализ), удается установить присутствие промежуточных соединений. [c.119]

    Механизм гомогенного катализа обычно объясняют с помощью теории промежуточных соединений. Согласно этой теории катализатор (К) сначала образует с одним из исходных веществ промежуточное соединение (АК). Затем последнее реагирует с другим исходным веществом с восстановлением катализатора. Схематически это можно представить так  [c.120]

    Механизмы гомогенного катализа [c.320]

    Механизм гомогенного катализа состоит в том, что ко- [c.162]

    Каков механизм гомогенного катализа Какую роль играют адсорбционные процессы в гетерогенном катализе  [c.167]

    Исходя из вышеизложенного, можно предположить, что химическая деструкция НПАВ под влиянием пластовой воды происходит по типу механизма гомогенного катализа. В присутствии породы, по-видимому, разрушение НПАВ происходит по гетерогенному механизму, т. е. как более глубокому разрушению НПАВ. Кроме того, присутствие кислот существенно изменяет стабильность НПАВ за счет проникновения эфирных атомов кислорода. [c.101]

    Кинетике и механизму реакции гидрокарбонилирования были посвящены весьма обширные исследования 43, 64]. Полученные данные представляют интерес не только для изучения оксореакции, но могут быть полезными и для выяснения некоторых вопросов механизма гомогенного катализа. [c.266]

    Другое промежуточное соединение реакции (2.1) ЫзО обладает более высокой термической стабильностью по сравнению с озоном. Как следует из данных работ [202—234], измеримая скорость разложения закиси азота наблюдается в области температур 7 700°К. Механизм гомогенного процесса имеет следующий вид [202—220]  [c.80]

    Гомогенный катализ может протекать в газовой илн жидкой фазе. Механизм гомогенного катализа состоит в образовании между реагентами и катализаторами нестойких промежуточных соединений, существующих в той же фазе (газ пли раствор), после распада которых катализатор регенерируется. В отличие от гетерогеннокаталитических реакций при гомогенных состав промежуточных соединений в ряде случаев можно выявить анализом. Процессы гомогенного катализа классифицируются по типу взаимодействия между реагирующими веществами и катализатором на окнслительно-восстановительное и кислотно-основное взаимодействие. По фазовому состоянию гомогенные каталитические процессы делят на жидкофазные (в растворах) и газофазные. [c.221]

    Основное внимание в этой книге уделяется механизмам гомогенных каталитических реакций в растворе, однако дается также и краткое изложение основ гетерогенного катализа. В круг рассматриваемых проблем входит, например, определение движущих сил и путей протекания каталитических реакций. Кроме ТОГО, разработана система принципов, позволяющих [c.7]

    Исследования скорости термического разложения окиси этилена при температуре 350—440 °С и давлении 180—44 мм рт. ст. показали, что реакция имеет приблизительно первый порядок и протекает по свободнорадикальному механизму. Гомогенное термическое разложение окиси этилена при 400 °С протекает с накоплением ацетальдегида и кетена . [c.59]

    Весьма примечательно, что наилучшего понимания каталитических реакций удалось добиться в тех случаях, когда промежуточные стадии или соединения были идентифицированы химическими методами такова, например, большая область реакций карбониевого типа, протекающих на кислотных катализаторах, а также гомогенные реакции, катализируемые комплексами, число которых непрерывно возрастает. Механизм гомогенных реакций можно экстраполировать на гетерогенные реакции, и успехи, достигнутые в области химии неорганических комплексов и в теории кристаллического поля, создали теоретические предпосылки, доказывающие правильность такой экстраполяции. И все же такой чисто химический подход неудовлетворителен, в особенности в области гетерогенного катализа, в котором физические явления (обусловленные влиянием поверхности) иногда накладываются на химическое явление (эффекты, связанные с переносом вещества или [c.7]

    Физико-химические исследования в области органической химии, и прежде всего гомогенного катализа, привели к столь фундаментальным обобщениям, что давно уже выделились (под названием физико-оргэ ническая химия ) в самостоятельный раздел науки/ На наших глазах на стыке физической химии и молекулярной биологии происходит становление новой научной дисциплины — физикохимии биокатализа (химической энзимологии). Тесная связь этой относительно молодой области науки с физико-органической химией обусловлена, главным образом, тем, что путь к познанию каталитических функций ферментов проходил прежде всего через известные механизмы гомогенно-каталитического типа. [c.3]

    Примеры каталитического действия в растворах многочисленны, и многие из них находят практическое применение в аналитической химии, например окисление щавелевой кислоты перманганатом гсалия катализатором являются ионы Мп в присутствии Н 2804. Механизм гомогенного катализа может включать в себя как молекулярные, так и ионные промежуточные соединения. Снижение энергии активации вызывается умень-шеп11см энергии связи соседних атомов при взаимодействии с катализатором, что облегчает разрыв связей соседних атомов и их перегруппировку. [c.288]

    Можно предположить, что образование алкилфенолов с разветвленной алкильной цепью происходит при разрыве окси-этильного фрагмента под влиянием каталитических количеств солей переходных и непереходных металлов, содержаш ихся в пластовой воде по механизму гомогенного катализа. Установлено, что в качестве центрального атома металла, ответственного за превращение НПАВ, выступают соединения железа, меди, кобальта и марганца. Это определено на основании данного спектрального анализа по взаимодействию сдвигающихся шифт-реагентов с оксиэтильными фрагментами Неонола АФэ-12. [c.100]

    Э. п. состоит из двух основных стадий - образование полимерно-мономерных частиц (ПМЧ) и полимеризация мономеров в ПМЧ. Образование ПМЧ может происходить из мицелл эмульгатора, микрокапель мономера, а также по механизму гомогенной нуклеации (из афегатов макромолекул или макрорадикалов, достигших определенной степени полимеризации). Возможность одновременного формирования ПМЧ по разным механизмам приводит к получению полимерных суспензий с широким распределением частиц по размерам. [c.479]

    Механизм гомогенной реакции А А + S может быть различным. Если редокс-пара А/А выполняет только функцию переносчика электронов, то имеют дело с редокс-катализом или с го-момедиаторной системой. В этом случае обмен электронами между А и S происходит по внешнесферному механизму. Если же в хо е реакции медиатор одновременно связывает субстрат в аддукт А S, который затем распадается с регенерацией А, то имеют дело с химическим катализом или с гетеромедиаторной системой. В случае химического катализа перенос электронов, как правило, осуществляется по внутрисферному механизму. [c.477]

    Известно, что наличие в растворе даже следов ионов, способных существовать в нескольких валентных состояниях, вызывает цепное ра.эложение пероксида водорода. Принятый в настоящее время механизм гомогенного каталитического разложения пероксида водорода основан на образовании в качестве промежуточных продуктов свободных. радикалов — гидроксила и пергидроксила, при nonepevi HHOM окислении и восстановлении катализатора [1]. [c.67]

    Предложенная схема механизма гомогенного термического распада окиси этилена включает образование активированных мо.чекул ацетальдегида. Однако Касселц подверг критике эту схему , так как считает маловероятным образование возбужденных молекул ацетальдегида и их последующий распад на СО и СН или их дезактивацию при столкновении с другими молекулами. При разложении окиси этилена в интервале 435—505 °С среди продуктов распада ни на одной из стадий процесса не был обна-ружен ацетальдегид. Были найдены только метан, окись углерода, небольшое количество водорода и этана. При определении констант скорости распада окисн этилена при давлениях от 15 до 800 мм рт. ст. было установлено", что прн 475 °С и давлениях выше 250 М.М. рт. ст. реакция распада строго следует мономолекулярному закону в согласии с данными . В интервале давлений 250—40 мм рт. ст. реакция становится бимолекулярной. Энергия активации процесса для давлений выше 300 мм рт. ст. составляла 54 ккал1моль, а для давления 20 мм рт. ст. — около 50 ккал/моль. Эти значения для энергии активации также близки к дaнныл . [c.58]


Библиография для Механизм гомогенного: [c.222]   
Смотреть страницы где упоминается термин Механизм гомогенного: [c.205]    [c.336]    [c.339]    [c.414]    [c.216]    [c.183]    [c.497]    [c.76]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте