Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы межфазных реакци

    Это самая обширная группа из изученных каталитических меж-фазных реакций. Сюда относятся многочисленные реакции 0-, 1М-, 8- и С-алкилирования, конденсации, присоединения и др. Такие реакции могут осуществляться как в присутствии каталитических количеств катализатора межфазного переноса, который обеспечивает транспортировку аниона А в органическую фазу и тем самым дальнейший ход реакции, так и в присутствии эквимольных количеств катализатора межфазного переноса. В этом случае сначала проходит стехиометрическая реакция между катализатором и субстратом с образованием соли органического аниона и четвертичного аммониевого катиона О  [c.12]


    Начнем наше рассмотрение с реакции алкилирования, которая должна характеризоваться сильной зависимостью от р/Са соответствующей С—Н-, N—Н- или О—Н-кислоты. Относительно сильные кислоты, такие, как, например, ацетилацетон, растворяются в гидроксиде натрия. Соответственно работа катализатора межфазного переноса состоит в реэкстракции аниона в форме ионной пары обратно в органическую фазу, где и проходит С- или 0-алкилирование (в разд. 3.10 см. о направлении алкилирования амбидентных анионов). Другими словами, в этом случае действует механизм, представленный на схеме 2.2. [c.55]

    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]

    По механизму всаливания , связанному с увеличением растворимости органического субстрата в водной фазе при добавлении катализатора межфазного переноса, реакция осуществляется в водной фазе. Этот механизм также включает три основные стадии. [c.13]

    Образование катализаторов при реакции. Катализатор межфазного переноса может образоваться в ходе реакции. Например, при алкилировании кетонов алкилгалогенидами можно применять в качестве катализаторов третичные амины, которые образуют четвертичные соли с алкилгалогенидами [53]. Третичные амины можно успешно использовать также при генерировании дихлоркарбена из хлороформа [54], который при действии третичных аминов образует ониевые соли  [c.33]

    В системе жидкость — твердая фаза (где твердой фазой служат NaOH, КОН, К2СО3, ЫагСОз) такой обмен не идет. В этом случае реакции, например депротонирование, по-видимому, проходят на поверхности раздела фаз, а катализатор межфазного переноса просто снижает энергию барьера реакции (как в случае гетерогенного катализа). Более подробно механизм межфазного катализа обсужден в следующем разделе. [c.8]


    В заключение приводим краткую сводку наиболее существенных фактов, которые необходимо учитывать при рассмотрении механизмов реакций в двухфазных системах с катализаторами межфазного переноса. [c.24]

    Книга посвящена одному из новых перспективных методов органического синтеза — использованию катализаторов межфазного переноса (четвертичные аммониевые или фосфонисвые соли, краун-эфиры, криптаты и др.) в различных реакциях. Применение этих катализаторов позволяет не только резко повысить скорость реакций, но и использовать в качестве оснований твердые щелочи или их водные растворы вместо алкоксидов, амидов, гидридов щелочных металлов, самих щелочных металлов, металл-органических соединений и т. п., устраняет необходимость использования безводных сред даже в реакциях, очень чувствительных к влаге. В книге приведены типичные методики проведения разнообразных реакций, рассмотрены теоретические вопросы межфазного катализа. [c.2]

    Введение катализатора межфазного переноса сдвигает реакцию в сторону О-алкилирования вплоть до полного исключения процесса С-алкилирования, повышает выход продуктов алкилирования и, кроме того, значительно сокращает время реакции в условиях межфазного катализа реакция заканчивается за 20 ч вместо 5 дней. [c.67]

    Межфазным катализом (МФК) называют ускорение реакций между химическими соединениями, находящимися в различных фазах. Как правило, это реакции между солями, растворенными в воде или присутствующими в твердом состоянии, с одной стороны, и веществами, растворенными в органической фазе, — с другой. В отсутствие катализатора такие реакции обычно протекают медленно и неэффективны или не происходят вообще. Традиционная методика проведения реакций включает растворение реагентов в гомогенной среде. Если используется гидроксилсодержащий растворитель, реакция может замедляться из-за сильной сольватации аниона. Побочные реакции с растворителем иногда снижают скорость еще больше. Часто превосходные результаты дает применение полярных апротон-ных растворителей. Но они обычно дороги, трудно отделяются после реакции и могут вести к возникновению экологических проблем при широкомасштабном использовании. Кроме того, в некоторых случаях, например при О- или С-алкилировании амбидентных анионов, полярные апротонные растворители могут в результате преобладающего образования нежелательных продуктов в заметной степени подавлять, а не промотировать реакцию. [c.12]

    Проблемы интенси( )икации химических процессов привлекают в последнее время всеобщее внимание. Один из методов интенсификации промышленных процессов заключается в целенаправленной организации химических процессов, которая обеспечивает заданную производительность с высокой селективностью. Под целенаправленной организацией мы понимаем такие воздействия на процесс, на всех уровнях иерархии ( химическая реакция, зерно катализатора, межфазный тепло- и массоперенос, гидродинамика потока ), которые приводят к достижению наиболее эффективных режимов работы реакторного оборудования. Анализируются условия возникновения множественности стационарных состояний в фазовом пространстве и возможности смещения стационарных точек по фазовому пространству варьированием условий проведения каталитического процесса в адиабатическом реакторе. Проводится анализ химически реагирующей среды в зерне катализатора и реакторе с целью вывода уравнений, которые существенно упрощают как вычисление температурных и концентрационных профилей, так и процедуру установления областей множественности стационарных состояний. [c.108]

    Как вытекает из названия метода, катализаторы межфазного переноса используются при проведении реакций в системе, состоящей из двух несмешивающихся фаз жидкость — жидкость илн твердая фаза — жидкость. Одна из фаз (жидкая, обычно водная, или твердая) включает основание и (или) нуклеофил. Вторая фаза, как правило, является раствором субстрата в каком-либо органическом растворителе (иногда роль растворителя играет сам субстрат). Поскольку фаза, содержащая основание и (или) нуклеофил, нерастворима в фазе с субстратом, в отсутствие катализатора межфазного переноса реакция не идет. Добавка межфазного катализатора, содержащего лнпо-фильный катион, растворяющийся в обеих фазах, вызывает обмен анионов катализатора с анионом в водной (или твердой) фазе. Если обозначить катион катализатора межфазного переноса анион Х , а катиоп нуклеофила в водной фазе М+ и соответствующий анион Ни , то ионный обмен между фазами можно представить как равновесие [c.7]

    Известно много методов окисления. Однако большое значение этой реакции побудило исследовать применимость межфазных катализаторов в реакции окисления в тех случаях, когда органический субстрат нерастворим в водных средах, а окислитель в свою очередь нерастворим или плохо растворим в органических растворителях. Принципиальная возможность использования межфазных катализаторов для окисления нерастворимых в воде субстратов в апротонном растворителе была показана еще в 1965 г. [388]. В качестве катализатора была использована четвертичная арсониевая соль — метилтрифенил-арсонийхлорид при этом происходил обмен хлор-аниона на анион перманганата из водного раствора перманганата калия и перенос этого аниона в хлороформенный раствор субстрата (октен-1, пропанолы-1 и -2, гептанол-4 и др.), где и проходило окисление. В таких условиях пропанол-2, например, на 100% превращался в ацетон. грет-Бутиловый спирт, толуол, этилацетат, диэтиловый эфир, ацетон или дипропилкетон не окислялись. Позже было установлено, что октен-1 и децен-1 превращаются соответственно в гептановую кислоту (количественный выход) и нонановую кислоту (выход 91%) при окислении нейт- [c.136]


    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Несмотря на большое структурное сходство катализаторов межфазного переноса с поверхностно-активными веществами, они весьма различаются по каталитическому действию. Высокоэффективные катализаторы межфазного переноса обычно являются плохими поверхностно-активными веществами. Кинетические данные и способность ониевых солей ускорять реакции даже в неполярных средах подтверждают предположение, что суть их каталитического действия заключается не в образовании мицелл, а в создании каталитического цикла, включающего обмен ионами. Было показано [9], что реакция между 1-хлор-октаном и цианидом натрия катализируется как анионными поверхностно-активными веществами (например, додецилбен-золсульфонатом натрия), так и неионными поверхностно-активными веществами (например, продуктами реакции додеканола и тетрадеканола с 6 моль этиленоксида) однако скорости реакции при этом в 100—1000 раз ниже, чем при применении четвертичных аммониевых солей. Таким образом, мицеллярный катализ можно, конечно, рассматривать как межфазный, однако ои обладает своей спецификой и далее не будет обсуждаться в данной книге (см. обзоры [10—131). Отметим, однако, что, как правило, поверхностно-активные вещества тормозят реакции в двухфазной системе. Это, очевидно, связано с тем, что образование мицелл изменяет физические характеристики системы и, кроме того, большая часть поверхности раздела фаз занимается поверхностно-активным, веществом, что приводит к вытеснению катализатора межфазного переноса. Именно поэтому для каждой системы существует свой оптимальный размер катиона, когда он еще остается катализатором межфазного переноса, но уже не является поверхностно-активным веществом. [c.16]

    Теперь, разобравшись с механизмом алкилирования в условиях МФК, перейдем к рассмотрению механизма генерирования дигалокарбенов. Мы тщательно изучим все факты, относящиеся к генерированию дихлоркарбена, однако полученные выводы равным образом будут применимы ко всем карбенам, образующимся при межфазных реакциях. Проведение конкурентных реакций показало, что дихлоркарбен, генерируемый при МФК, идентичен дихлоркарбену, получаемому другими методами [2, 29], и не является карбеноидом. Кроме того, можно показать, что в условиях МФК карбен СХ может, обменивая галогены, превращаться в СХг и С 2. Надо добавить, что в отличие от всех других методов генерирования дигалокарбенов при МФК реакция проходит при комнатной температуре как необратимый быстрый одностадийный процесс. В то врем как смесь трег-бутилата калия с хлороформом реагирует при —20 °С независимо от присутствия или отсутствия субстрата, а Ь1СС1з распадается обратимо даже при такой низкой температуре, как —72 °С, реакционная смесь, используемая в МФК — хлороформ/конц. МаОН/катализатор, — в том случае, когда отсутствует реактант, взаимодействующий с карбеном, сохраняет свою способность давать СС12 даже при комнатной температуре в течение нескольких дней. Поскольку между хлороформом и концентрированным раствором ЫаОО/ОгО наблюдается очень, быстрый Н/О-обмен, который происходит и без всякого катализатора, то первой стадией должно быть депротонирование на границе раздела фаз. Предположительно при этом образуется двойной слой того же типа, что и обсуждавшийся выше  [c.61]

    Присутствие катализатора К не меняет точку равновесия реакпии, а изменяет скорость достижения этого равновесия. Как упоминалось, в присутствии катализатора сопротивление реакции шунтируется параллельным контуром с малым сопротивлением реакции. В данном случае диссипация химической энергии по мере приближения к состоянию химического равновесия учитывается многосвязным диссипативным Л-иолем. Прп этом па связях Д-поля возникает одпнаковая потоковая переменная и происходит накопление промежуточного активированного комплекса (АК). Такое распределение силовых е-переменных и потоковых /-переменных характерно для слияющих структур типа 1- и 0-узлов, и это позволяет перейти от Я-псля к эквивалентному диаграммному комплексу, состоящему из 1- и 0-узлов и односвязных диссипативных Л-элементов (рис. 5.9). Здесь элементы ТВ и Гд отражают конкретный механизм межфазного переноса, элемент 5 с нижним индексом компонента символизирует источник (сток) этого компс-нента, один верхний штрих обозначает жидкую фазу, два штриха — газовую. [c.228]

    В последнее время для подобных реакций предложены так на-3 >1ваемые катализаторы межфазного переноса, представляющие собой соли или основания четырехзамещенного аммония, в которых одна из алкильных групп является достаточно длинной, чтобы обеспечить их растворимость не только в водной, но и в органической [c.172]

    Сущность межфазного катализа заключается в том, что взаимодействие соединений, находящихся в несмещивающихся фазах, резко ускоряется благодаря введению в реакционную смесь межфазного катализатора. Как правило, это реакция между солями, растворенными в воде или присутствующими в твердом состоянии, с одной стороны, и веществами, растворенными в органической фазе, с другой. В отсутствии катализатора такие реакции обычно протекают медленно или не происходят вообще [92]. [c.107]

    Развиваемый в последние годы метод межфазною катализа, основанный на использовании четвертичных солей аммония или фос-фония, позволяет проводить реакцию нуклеофильного замещения в несмешивающихся растворителях. В воде растворяют соль содержащую нуклеофил У", в органическом растворителе растворяют субстрат КХ. В отсутствие катализатора межфазного переноса субстрат и нуклео( )Ил не взаимодействуют. Катализаторы межфазного переноса — соли четвертичного аммония или фосфония р+Х [например, бензилтриэтилам.монийхлорид вH5 H2( 5H,,)зN+ l ]-содержат липофильные катионы и способны растворяться как в воде, так и в органическом растворителе. При добавлении в реакционную массу небольшого количества катализатора происходит реакция между солью 0"Х и растворенной в воде солью [c.96]

    Катализаторы межфазного переноса особенно широко используют в реакциях нуклеофильного замещения и присоединения, значительно в меньшей степенн — в реакциях элиминн-рованпя. Описаны отдельные примеры использования этих катализаторов в процессах изомеризации. Ниже последовательно рассмотрено применение межфазного катализа в нуклеофильных реакциях замещения с участием неорганических и органических анионов, в нуклеофильных реакциях присоединения органических анионов по кратным связям (включая последующие превраш,ения продуктов присоединения, например элиминирование и циклизацию), в реакциях присоединеиия дигалогенкарбенов по простым (внедрение) н кратным связям, в реакциях элимнпнрования и некоторых других превращениях. [c.50]

    В условиях межфазного катализа, например, скорость гидролиза галогеналкилов увеличивается в 10 —10 раз. При этом по реакционной способности алкилгалогениды располагаются в ряд ЯС1> >-НВг>Н1, т. е. в порядке, обратном наблюдаемому в реакциях без применения катализаторов межфазного переноса. [c.96]

    Синтез нитрилов удается осуществить лишь в случае первичных и вторичных галогенопроизводных, применяя соли щелочных металлов (K МаСЫ). Реакции с Ag N, особенно в полярных растворителях, приводят к изонитрилам. Реакции с вторичными галогенопроизводными рекомендуется проводить в апротонных диполярных растворителях. Выход нитрилов повышается при использовании катализаторов. межфазного переноса. [c.104]

    Для алкилирования (а также для реакций ацилирования, гидроиерекисыого окисления п др.) часто используют катализаторы межфазного иерепоса соли четвертичных аммониевых оснований (наиример, триэтплбензиламмонийбро- [c.174]

    С конца 1960-х годов ситуация стала изменяться. Тонкий органический синтез постепенно, но неуклонно становился все более каталитическим в полном смысле этого слова. Он стал осушествлять-ся на поверхности раздела фаз жидкость/жидкость, жидкость/твердая фаза и жидкость/иммобилизованный катализатор межфазного переноса/жидкость. Межфазный катализ (МФК) оказался одним из наиболее простых и экономичных путей интенсификации производства широкого круга органических продуктов. Он исключил дорогостоящие растворители (спирты, эфиры, диоксан и т. д.) и взрыва- и пожароопасные реагенты, оказался нетребовательным к аппаратному оформлению процессов, позволил перейти к проточным системам непрерывного производства, а главное — резко увеличил скорость и селективность реакций. [c.247]

    Изучение кинетики и механизма реакций в двухфазных системах, прежде всего с использованием в качестве водной фазы концентрированных растворов щелочей, еще только начинается. Однако уже сейчас можно сказать, что реакции н двухфазных системах представляют собой особую группу реакций со своей спецификой, которая отличает их от аналогичных реакций в гомогенных условиях. Влияние адсорбции органических молекул на поверхности раздела фаз на кинетику сближает нх с гетерогенными реакциями, а образование промежуточных комплексов субстрата с катализатором межфазного переноса и соответственно михаэлисовская кинетика — с ферментативными процессамп, Таким образом, развитие этой новой области кинетики органических реакций позволит исследовать системы, моделирующие гетерогенные и ферментативные реакции. [c.47]

    Интересно применение в качестве катализаторов межфазного ереноса полпмерносвязаиных четвертичных солей. Так, в г стеме толуол — вода прн использовании катализатора К — 6H4 H2N(Me)P(0) (NMe2)2 (R —полимер) при реакции K I с 1-бромоктаном получают 1-хлороктан с выходом 83%. [c.54]

    Близкая методика была разработана для получения ди(арил-окси)метанов. Однако в системе жидкость — жидкость реакция идет медленно наиболее удовлетворительные результаты получают в системе твердая фаза — жидкость в дихлорметане (реагент и одновременпо растворитель) в присутствии измельченного КОН и катализатора межфазного переноса  [c.76]

    Реакция Кори. Как известно, ароматические альдегиды и кетоны реагируют с сульфилидами, образуя оксираны. Обычно эта реакция требует безводных условий. Распространение на иее метода межфазного катализа явилось большим успехом. Показано, что в обычных условиях межфазного катализа (15 н. МаОН — бензол, комнатная температура, перемешивание) при действии додецилдиметилсульфонийиодида (который одновременно служит катализатором межфазного переноса) на бензальдегид образуется фенилоксиран с выходом 817о [367]  [c.130]

    В этом случае катализатором межфазного переноса также является сульфониевая соль (реакцию проводят в системе толуол— вода — NaOH). [c.131]

    Изучена [348] также зависимость соотношения Е- и 2-изомеров от природы межфазного катализатора при реакции между бензальдегидом и диэтилфенилтиометилфосфонатом  [c.136]


Смотреть страницы где упоминается термин Катализаторы межфазных реакци: [c.33]    [c.15]    [c.53]    [c.58]    [c.221]    [c.237]    [c.120]    [c.102]    [c.105]    [c.301]    [c.316]    [c.33]    [c.53]    [c.56]    [c.85]    [c.144]    [c.166]    [c.1313]    [c.1448]   
Органический синтез в двухфазных системах (1982) -- [ c.7 , c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор межфазный

Межфазные



© 2025 chem21.info Реклама на сайте