Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь сильная

    Метод расчета теплот образования по энергиям связи целесообразно применять только для алифатических органических соединений, так как в ароматических и гетероциклических соединениях энергия связи сильно зависит от строения молекулы и полученные значения значительно отличаются от истинных. [c.96]

    Катионы связаны с молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его размер,тем значительнее будет катионная доля поляризующего действия К на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может привести к полному отрыву протона — водородная связь становится ковалентной. Донорная активность А" будет тем значительнее, чем больше я и меньше га . В зависимости от силы поляризующего влияния К"" и А" на молекулы Н2О будут получаться различные результаты. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются -электро-нами. [c.202]


    Катионы связаны с молекулами воды донорно-акцеп-торной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его ра шер, тем значительнее будет катионная доля поляризующего действия К" на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может принести к полному отрыву протона— водородная связь становятся ковалентной. До-норная активность А" будет тем значительнее, чем больше п и меньше В зависимости от силы поляризующего [c.208]

    Интерес к особым свойствам граничных слоев воды имеет давнюю историю [444]. Результаты многочисленных исследований свидетельствуют о том, что свойства этих слоев существенно отличаются от свойств объемной воды [42, 43, 415, 421, 422]. Наиболее простое описание этих различий можно выполнить с помощью представления о связанной воде [1, 64, 445]. Для фосфолипидных бислоев это означает, что одна молекула, например, лецитина связывает 20 молекул воды, из которых 2—3 связаны сильно , а остальные представляют собой промежуточный тип слабо связанной воды [446]. Очевидно, что в рамках такого упрощенного описания довольно трудно выяснить физико-химическую природу воздействия поверхности на структуру граничных слоев воды или электролита. В работах Б. В. Дерягина [42, 43, 415] сделан переход к более детальному описанию граничных слоев было высказано предположение о существовании специфического взаимодействия, существенно отличающегося от классических (электростатического и вандер-ваальсового) и возникающего в процессе сближения частиц или поверхностей в зоне перекрытия граничных слоев. [c.161]

    Теория электролитической диссоциации. Неэлектролиты и электролиты. Гидратация ионов. Диссоциация в воде веществ с ионными и ковалентными связями. Сильные и слабые электролиты. [c.61]

    Однако анализ температур кипения водородных соединений элементов IV—VI групп указывает на аномальное поведение аммиака ЫНз, воды Н2О и фтороводорода НР(в) по сравнению с водородными аналогами азота, кислорода и фтора соответственно, что обусловлено действием более эффективных межмолекулярных сил, которые носят название водородной связи. Единственный электрон атома водорода обусловливает возможность образования им только одной ковалентной связи. Однако если эта связь сильно полярна, например в соединениях водорода с наиболее электроотрицательными элементами (Г, О, Ы), то атом водорода приобретает некоторый положительный заряд. Это позволяет электронам другого атома приблизиться [c.38]


    Каждый из перечисленных видов химической связи может видоизменяться в зависимости от различных признаков. Если в качестве такого признака выбрать степень перераспределения электронной плотности между атомами при образовании химической связи, то можно выделить связи неполярную, полярную и сильно полярную. Неполярная и полярная короткодействующая химическая связь является тем видом связи, который хорошо известен как ковалентная химическая связь. Сильно полярная химическая связь представлялась независимой от ковалентной связи и исторически получила название ионной. [c.114]

    Б. Водородная связь. Сильно электроотрицательный атом, например 0 , отнимает электрон от атома Н последний превращается в Н" , способный связывать второй 0 . В результате воз- [c.158]

    Наличие в них химических связей, сильно отличающихся энергиями, когда атомы в цепях макромолекул соединяются химическими связями, имеющими энергии порядка сотен кДж/моль, а макромолекулярные цепи связываются друг с другом молекулярно-поляризационными или водородными связями с энергиями до 30 кДж/моль. 2. Гибкость цепей, обусловленная вращением звеньев. [c.33]

    При наличии хотя бы одного ароматического заместителя у атома азота (например, в анилине) углы связей сильно меняются. Это еще не 120°, но пирамида уже более плоская. А вот в молекуле трифенила-мина углы связей 120°, т.е. молекула плоская  [c.130]

    В одну сплошную пространственную сетку обусловлено возникновением химических связей, сильные механические воздействия вызывают необратимое разрушение студня. [c.483]

    В электрокаталитических процессах особую роль играет хемосорбция частиц на поверхности электродов. Прочность хемосорбционных связей сильно зависит от материала электрода, что и обусловливает, в первую очередь, зависимость скоростей электрокаталитических процессов от природы катализатора. Скорость и направление этих процессов можно регулировать также, изменяя потенциал катализатора, pH и состав раствора, природу носителя, на который нанесен катализатор, и другие факторы. Электрохимические методы изучения катализаторов позволяют глубже подойти к пониманию природы катализа, на основе этих методов можно осуществлять контроль за практически важными каталитическими процессами. [c.265]

    В чисто качественной форме этот метод применяют для указания ненапряженных конфигураций циклических соединений. Напряженными называют те конфигурации, в которых валентные углы или длины связей сильно отличаются от нормальных. Этот термин вызывает представление о связях как о пружинах, исходящих из атома под определенным углом друг к другу и способных с некоторым напряжением изгибаться или растягиваться. [c.77]

    Активной химической группой, обусловливающей сродство материалов к воде (гидрофильность), является гидроксил ОН. Это станет понятным, если рассматривать взаимодействие воды с гидроксилсодержащими веществами, в частности со спиртами. Так как кислород способен при образовании химических связей сильно оттягивать электроны, заряды в молекуле спирта распределяются следующим образом  [c.70]

    В ljOy эффективный заряд на атоме кислорода ничтожно мал и связь С1—О близка к неполярной, тогда как в Na O эффективный заряд на атоме кислорода составляет —0,81, т. е. в этом соединении химическая связь сильно полярна. Понижение полярности связи в этом ряду соответствует уменьшению различия в электроотрицательностях элементов, образующих соединения. [c.81]

    К. Ч. Геометрия комплекса металла образующие а-связи сильные слабые [c.205]

    Анионы А"- связываются с молекулами воды водородной связью. Сильное воздействие анионов может привести к полному отрыву протона — водородная связь становится ковалентной — анион входит в состав молекулы кислоты (или аниона видй HS , НСОз и т.п.). Взаимодействие анионов с протонами А"-Тем значительнее, чем больше п и меньше г (А"-). В зависимости от силы поляризующего влияния К"" " и А" на молекулы Н2О будут получаться различные результаты. Так, KaTHOHiJ элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра перБых менее эффективно экранируются -электронами, [c.265]

    Благодаря большой электроотрицательности кислорода обе углерод-кислородные связи сильно поляризуются и атом углерода приобретает частичный положительный заряд. Этот положительный заряд является причиной индуктивного смещения электронов в связях между атомом углерода и соседними группами. Все эти особенности электронного строения карбонильной группы могут объяснить многие характерные реакции карбонилсодержащих соединений. Свободная пара на кислороде обусловливает электрофильную атаку углерод карбонильной группы из-за частичного положительного заряда является местом атаки нуклеофильных частиц индуктивный сдвиг электронов вдоль связей между углеродным атомом и соседними группами объясняет некоторые особые свойства групп, расположенных по соседству с карбонильной функцией. [c.114]


    Единственный электрон атома водорода обусловливает возможность образования им только. .. ковалентной связи. Однако если эта связь сильно полярна, а она является таковой в комбинациях водорода с наиболее. .. элементами (О, Е, К), то атом водорода приобретает положительный заряд. Это позволяет электронам другого атома сильно приблизиться к. .. и завязать с ним связь, называемую водородной . [c.252]

    В угольной кислоте и карбонатах анион угольной кислоты СО по существу представля т собой ацидокомплекс, в котором центральный атом углерода подвержен зуэ -гибридизации. Остающиеся у всех атомов по одному р-электрону образуют делокализованные л , р-связи, сильно увеличивающие прочность комплекса. При этом атом углерода находится в центре равностороннего треугольника, а кислород — по его вершинам  [c.195]

    Нередко проявляется и подобное же влияние воды на соль гидратация соли - сопровождается усилением полярности связи в ней. Так, безводный А1С1з не содержит ионов А1 +, так как отделение трех электронов от атома требует затраты слишком большого количества энергии. В безводном А1С1з связи ковалентные полярные, но при гидратации его степень ионности связей сильно возрастает за счет энергии процесса гидратации. Поэтому соединение [А1(Н20)б]С1з можно считать содержащим ионы [А1(Н20)бР  [c.142]

    Опыт показал, что степень изомеризации двойпой связи сильно зависит от копцептрации серной кислоты, причем да ке незначительные изменения высоких концентраций ее оказывают сильное влияпие. Друз ими словами, очевидно, содержание виды в серной кислоте в значптельной стенени определяет скорость перемещения двойной связи. К согкалению, работ в этой области очень мало или они еще не опубликованы. [c.696]

    Из приведенных примеров следует, что суммарная энтропия исходных оксидов меньше энтропий получившихся веществ. Так как энтропия — мера беспорядка структуры, то структура клинкерных минералов менее упорядочена, чем структуры исходных оксидов. Сравнивая AS приведенных выше реакций, можно увидеть, что наиболее упорядоченную структуру имеет двухкальцие-иый силикат AS = 6,3 Дж/(моль-К). Отсюда следует, что атомы в его кристаллической решетке связаны сильнее и его химическая активность соответственно меньше, чем у других минералов. Высокие значения Д5 для СзА (35,9 Дж/(моль-К) и С/, АР (26,5 Дж/(моль-К) говорят о том, что их структуры в меньшей степени упорядочены, а следовательно, их химическая активность выше, чем у клинкерных минералов-силикатов, что хорошо согласуется с опытом. [c.98]

    Образовавшаяся водородная связь увеличивает полярность связи О—Н в карбоксильной группе вследствие смещения электронных пар в направлении, указанном стрелками. В результате усиливаются кислотные свойства салициловой кислоты (Ки° = 1,06 10" ) по сравнению с бензойной (У(и = 6,0- Ю ). В ряду Н—Р, Н—О, Н—Ы, Н—С1 и Н—5 полярность связи сильно понижается, а следовательно, уменьшается способность образовывать водородные связи. Для других соединений водорода с неметаллическими элементами она нехарактерна. Исключение составляют бороводороды (ВгНв, В4Н10 и др.), которым приписывают специфичную водородную связь, получившую название трехцентровой. [c.105]

    Увеличение числа кратных, особенно сопряженных, связей сильно повышает способность к полимеризации. Повыщение молекулярного веса мономера снижает склонность к полимеризации. Замещение атомов водорода у непредельных связей на галоген, винил, фенил, ацетиленил, эфирные группы часто стимулирует скорость полимеризации. Соединения с сопряженными двойными связями полимеризуются легко н быстро, с изолированными—не полимеризуются. [c.589]

    Одиако ковалентные связи, возникающие между адсорбированными лнтлскулами и нонерхностями окислов н солей (см. раздел V, II), могут, по-видимому, сильно изменяться под влиянием активных центров, поскольку образование связей сильно сказывается на распределении электрических зарядов вблизи них. Потому в данном случае нас ит ересует не только прочное ь образующейся связи, но и то влияние, которое она оказывает на прочность окружаютцих связей. [c.69]

    Например, реакция (П1.36) между молекулой СН4 и атомом С1 является реакцией окисления — восстановления. В молекуле СН,, пара электронов, образующая связь С -Н, в равной мере принадлежит обоим атомам, т. е. на каждый из атомов приходится в среднем по одному электрону, как и в случае свободных атомов Н и С. Поэтому атому водорода в СН4 приписывают степень окисления 0. В образующейся молекуле НС1 связь Н—С1 noJtHpHa, электронное облако о-связи сильно смещено в сторону атома С1 и принято считать, что атом Н частично отдал свой электрон атому С1 и имеет степень окисления 1, а атом С1 восстановлен до степени окисления —1. Таким образом, происходит перенос электрона от атома Н к атому С1. [c.102]

    Но мноше молекулы не могут служить структурными единицами твердого вещества. При тесном сближении таких молекул, как НаС1, между их атомами возникает такое сильное электростатическое взаимодействие, что они распадаются и образуются ионные макромолекулы — кристаллы твердого вещества,, в которых уже нет исходных молекул, но все же так или иначе проявляется ковалентная составляющая связи. Сильное межатомное взаимодействие, возникающее при сближении молекул металлических элементов типа Ыа2, существующих в парах металла, а также молекул типа Сг, приводит к тому, что эти молекулы перестают существо- [c.83]

    Анионы А " связываются с молекулами воды водородной связью. Сильное воздействие анионов может привести к полному отрыву протона от молекулы НгО - водородная связь становится ковалентной. В результате образуется кислота или анион типа Н5 , НСОГ и т. п. Взаимодействие анионов К с протонами тем значительнее, чем больше заряд аниона и меньше его радиус. Таким образом, интенсивность взаимодействия вещества с водой определяется силой поляризующего влияния К" и А " на молекулы Н2О. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экрлнируюгся с/-электронами. [c.283]

    Следует еще раз подчеркнуть, что схема Косселя — это чрезвычайно грубое упрощение. Связь О—Н не является ионной, и расстояние между центрами атомов кислорода и водорода никогда не равно 1,32 А, ион водорода утоплен в электронных оболочках кислорода (см. стр. 209). Кроме того, в случае высоких степеней окисления связь между-элементом Э и кислородом также не является ионной, и степень окисления, как указывалось выше, не соответствует заряду иона элемента. Однако несмотря на все это, схема Косселя в большинстве случаев приводит к совершенно правильным качественным выводам при сопеставлении сходных соединений, Скажем, гидроксидов элементов, принадлежащих к одной и той же группе периодической системы. Эта неожиданная применимость столь грубого построения обусловлена тем, что даже в случае связей, сильно отличающихся от ионных, их прочность растет с уменьшением межатомных расстояний (а следовательно, и вычисляемых из ни радиусов ионов ) и с увеличением степени окисления. Часто степень окисления приблизительно показывает число электронов данного атома, принимающих участие в образовании химической связи. Чем больше электронов участвует в образований связей, тем прочнее связи. Поэтому схема Косселя полезна для первоначальной общей ориентировки в многообразном материале неорганической химии. [c.89]

    Происходящий при химических реакциях разрыв валентной связи ионного типа, как правило, осуществляется гетеролитически (т. е. с образованием противоположно заряженных ионов), а разрыв связи неполярной — г о м о л и т и ч е с к и (т. е. с образованием нейтральных радикалов). Тип разрыва полярной связи сильно зависит от общего характера процесса, в котором участвует данная связь. Понятие энергии связи относят обычно к гомолитическому ее разрыву. [c.93]

    Характерной особенностью для карбонильной группы является то, что п-электронное облако смещено к более электроотрицательному атому кислорода, вследствие чего связь сильно поляризована. Углеродный атом является электронодефицитным центром, а кислород — электроноизбыточным (рис. 38). Плоскостное расположение атомов углерода и кислорода способствует тому, что карбонильная группа становется легко доступной для атаки. [c.331]

    Объектом изучения теории жидкостей до настоящего времени являлись в основном жидкости, называемые простыми это системы из сферически симметричных неполярных частиц, взаимодействия между которыми носят дисперсионный характер. К простым жидкостям, строго говоря, относятся только сжиженные благородные газы. С некоторым приближением можно включить в группу простых жидкостей также чистые жидкие металлы, жидкости, состоящие из двухатомных молекул (по-видимому, эти молекулы становятся подобными сферически симметричным благодаря вращению), В последние годы появились работы, в которых строгими методами (в частности, с помощью теории возмущений) изучают жидкости, образованные несферическими частицами, полярными молекулами. Особое положение в теории жидкостей занимает вода — система с межмолекулярными взаимодействиями чрезвычайно сложного характера (водородные связи, сильные ван-дер-ваальсовы взаимодействия). Интерес к изучению воды и водных растворов необычайно возрос в последнее время в связи с тем, что имеется непосредственная связь между проблемой состояния воды в растворах и проблемой биологических структур. Теории жидкой воды и водных растворов основаны почти исключительно на модельных представлениях. Такой подход в большой степени оправдывается явно выраженной квазикристалличностью воды при невысоких температурах, [c.362]


Смотреть страницы где упоминается термин Связь сильная: [c.147]    [c.72]    [c.77]    [c.546]    [c.72]    [c.77]    [c.221]    [c.105]    [c.117]    [c.273]    [c.22]    [c.339]    [c.379]    [c.6]   
Кинетика гетерогенных процессов (1976) -- [ c.238 ]




ПОИСК







© 2025 chem21.info Реклама на сайте