Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризуемость явление комбинационного

    Следовательно, явление комбинационного рассеяния можно наблюдать, только если da/dr Ф 0. (Отметим, что интенсивность релеевского рассеяния пропорциональна поляризуемости молекулы о равновесном состоянии.) [c.221]

    Из предыдущего рассмотрения очевидно, что изменение частоты рассеянного света, т. е. явление комбинационного рассеяния, обусловлено изменением поляризуемости молекулы в процессе колебаний [см. уравнение (33.7)]. [c.241]


    Как и инфракрасные спектры, спектры комбинационного рассеяния (КР) возникают вследствие изменения колебательного состояния молекул при поглощении световых квантов. Однако вероятности переходов между колебательными уровнями в явлениях рассеяния видимого света и поглощения инфракрасной радиации существенно различаются. В то время как интенсивности инфракрасных полос поглощения определяются значениями производной от момента электрического диполя по колебательной координате, яркость линий комбинационного рассеяния зависит от величины аналогичной производной поляризуемости. Поэтому могут оказаться различными не только контуры спектрограмм, но и наборы частот колебания, неактивные в инфракрасных спектрах, обычно дают весьма яркие линии в спектрах КР, и наоборот. Вследствие этого для полной характеристики колебаний молекул требуется совместное исследование инфракрасных спектров и спектров КР, тогда как для структурного анализа часто (исключая некоторые специаль- [c.35]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]

    Однако не все колебательные частоты молекул наблюдаются как в спектрах комбинационного рассеяния, так и в инфракрасных спектрах поглощения. В инфракрасной области поглощение есть функция изменения величины дипольного момента, а в спектрах комбинационного рассеяния — излучение является функцией изменения коэффициента поляризуемости молекулы при данном колебании. Так, например, двухатомные молекулы типа Ог, На, N2 и т. д. будут прозрачны в инфракрасной области из-за симметрии зарядов, но дадут характерные полосы излучения в спектрах комбинационного рассеяния, так как световые колебания сместят электронное облако в молекуле, образующее химическую связь, и поляризуют молекулу. Благодаря этому явлению ряд частот наблюдается или только в одном или в другом спектре. Следовательно, для получения более полной картины колебательных частот необходимо использование данных обоих методов. Удобство их совместного [c.415]


    В этой главе сделана попытка дать обзор спектроскопии КР газов в связи с развитием современных спектральных методов высокого разрешения. Следует различать три области приложения этого явления 1) при изучении структуры молекул, включая определение инвариантов поляризуемости, 2) при изучении межмолекулярных взаимодействий, 3) при рассмотрении особых эффектов, в частности резонансного комбинационного рассеяния. Порядок, в котором приведены эти темы, указывает лишь на степень полноты их изучения разными исследователями, работающими в области спектроскопии КР газов. [c.341]

    Другим способом взаимодействия колеблющейся 1иолекулы с лучистой энергией является комбинационное рассеяние света. Когда молекула колеблется, ее поляризуемость изменяется с частотой колебания. Если молекула погружена в поле монохроматического излучения с частотой, значительно превышающей ее колебательную частоту, молекула просто рассеивает большую часть падающих на нее световых квантов, никак не влияя на них. Однако иногда молекула может поглощать квант света, отнимать от него столько энергии, сколько требуется на возбуждение колебания в более высокое колебательное состояние, и затем реэмитировать остальную часть энергии в виде кванта с меньшей частотой, чем у возбуждающего света. Математическое описание явления несколько сложнее, чем в случае инфракрасного поглощения существенно, что это явление происходит потолму, что колебание молекулы вызывает изменение поляризуемости. [c.282]

    За исключением некоторых деталей, в частности таких, как только что упомянутые, классические методы приводят к теории комбинационного рассеяния, которая в общем находится в согласии с экспериментом. Прежде чем перейти к обсуждению приложения квантовой механики к явлению рассеяния, интересно отметить основную причину изменения частоты в рассеянном свете. Расссмотрение явления в рамках классической теории показывает, что колебательное комбинационное рассеяние имеет своим источником изменение поляризуемсти в течение колебаний молекулы, тогда как вращательное комбинационное рассеяние происходит только в том случае, если молекула анизотропна, т. е. имеет неодинаковую поляризуемость в различных направлениях. [c.242]

    Книга предназначена прежде всего для химиков, и при ее написании предполагалось, что читатель имеет определенные знания в области квантовой механики и теории групп. Я занимаюсь в основном спектроскопией комбинационного рассеяния света на электронных уровнях. В этой области предстоит сделать еще очень много, прежде чем можно будет написать о ней с достаточной полнотой, По этой причине раздел, посвященный спектроскопии электронного комбинационного рассеяния света, невелик по объему, и основное внимание уделено применению электронно-колебательных функций в выражении для тензора рассеяния, описывающего колебательное комбинационное рассеяние. Имеющиеся в настоящее время экспериментальные данные показывают, что модель поляризуемости Плачека применима лишь для объяснения некоторых аспектов эффекта колебательного комбинационного рассеяния. Однако модель, использующая вибронные волновые функции, объясняет и эти аспекты явления наряду с другими. Я не исключаю того, что уравнения в гл. IV (разд. IV- ) будут играть в дальнейшем более важную роль, чем можно было предвидеть, когда писалась эта книга. [c.7]

    Комбинационное рассеяние света. Эффект комбинационного рассеяния, открытый., независимо друг от друга Раманом, Мандельштамом и Ландсбергом, часто применяется для исследования соединений с ковалентной связью. Сущность эффекта заключается в том, что когда свет достаточной интенсивности проходит через вещество, то часть света рассеивается перпендикулярно направлению исходного луча, содержит и большие и меньшие частоты, чем были в исходном луче при обычном рассеянии света (релеевское рассеяние) частота вообще не изменяется. При комбинационном рассеянии наряду с нормальной частотой в спектре обнаруживаются дополнительные линии — спутники . Те линии, частота которых меньше, чем в исходном колебании, называют стоксовыми линиями, а те, у которых частота больше,— антистоксовыми. Физическая картина этого явления представляет собой взаимодействие падающего кванта света с молекулой вещества (неупругое соударение). При этом или часть энергии кванта поглощается молекулой и рассеивается меньший квант, или, если молекула находится в возбужденном состоянии, падающий квант получает от нее дополнительную энергию и рассеивается больший квант. Молекула, следовательно, может находиться в двух состояниях, отличающихся по запасу энергии на А . В первом случае квант рассеянного излучения должен иметь величину (Яг—АЕ), а во втором — величину (/гг+АЯ). Это соответствует частотам стоксовой линии V—(АЕ/Н) и антистоксовой - - АЕ/Н), причем интенсивность стоксовой линии будет выше, так как большинство молекул находится в основном состоянии, а число возбужденных молекул обычно очень мало. Энергетические уровни в комбинационном рассеянии представляют собой уровн , возникающие вследствие изменения поляризуемости молекулы. Свет, т, е. электромагнитные волны, вызывает поляризацию люлекулы и индуцирует в ней переменный диполь. Между напряженностью Е поля и дипольным моментом .I существует прямая пропорциональная зависимость Е= а х., где а — поляризуе- [c.206]



Смотреть страницы где упоминается термин Поляризуемость явление комбинационного: [c.11]   
Теоретическая химия (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризуемость



© 2025 chem21.info Реклама на сайте