Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула структура, методы изучения

    Наиболее информативным методом изучения пространственной структуры белковых молекул является метод  [c.530]

    Свойства света нельзя исчерпывающе описать на основании аналогии лишь с обычными волнами или лишь с обычными частицами. Установлено, что для понимания одних явлений более удобно считать свет волновым движением, тогда как при рассмотрении других явлений предпочтительнее считать свет состоящим из фотонов (разд. 3.11 и 3.12). Эта корпускулярно-волновая двойственность присуща также материи. Электроны, протоны, нейтроны и другие материальные частицы, как установлено, обладают некоторыми свойствами, которые ученые обычно связывают с волновым движением. Так, лучок электронов или пучок яейтронов может быть дифрагирован точно так же, как и пучок рентгеновских лучей. На дифракции электронов и нейтронов основаны важные методы изучения структуры кристаллов и молекул газов. Длина волны электрона, нейтрона или какой-либо другой частицы зависит от ее массы покоя и скорости, с которой она перемещается. Длина волны частицы определяется уравнением де Бройля Я,= /1/тг), где к — длина волны частицы, к — постоянная Планка, т — масса и у — скорость (разд. 3.11). [c.586]


    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]


    Масс-спектрометрия является инструментальным методом изучения органических соединений. С помощью этого метода устанавливают молекулярную массу органического вещества и строение его молекул, определяют его элементный состав. Как аналитический метод масс-спектрометрия обладает исключительно высокой чувствительностью и позволяет обнаруживать следовые количества органического вещества в больших объемах газов и жидкостей, а также в биологических системах. С помощью масс-спектрометрии можно изучать превращения вещества в процессе химической реакции, что существенно для установления механизмов реакций. Этот метод может использоваться и для изучения микроструктуры макромолекул, определения состава и структуры поверхностей полимерных материалов. В настоящее время масс-спектрометрия эффективно применяется в различных областях науки и техники, например в органической и элементоорганической химии, химии природных соединений, аналитической и физической химии, нефтехимии, биохимии, фармакологии, экологии. [c.3]

    Инфракрасная (ИК) спектроскопия используется в различных областях науки, и в каждой из них придается- этому термину различный смысл. Для химика-аналитика это удобный метод решения таких задач, как, например, определение пяти изомеров гексахлорциклогексана, качества парафина, смолы, полимера, эмульгатора в эмульсии для полировки, опознание страны, из которой вывезен контрабандный опиум. Физику ИК-спектроскопия представляется методом исследования энергетических уровней в полупроводниках или определения межатомных расстояний в молекулах. Она может быть также полезна и при измерении температуры пламени ракетного двигателя. Для химика-органика это метод идентификации органических соединений, позволяющий выявлять функциональные группы в молекулах и следить за ходом химических реакций. Для биолога ИК-спектроскопия - перспективный метод изучения транспорта биологически активных веществ в живой ткани, ключ к структуре многих естественных антибиотиков и путь познания строения клетки. Физикохимику метод позволяет приблизиться к пониманию механизма гетерогенного катализа и кинетики сложных реакций. Он служит дополнительным источником информации при расшифровке структуры кристаллов. В этих и многих других областях знания ИК-спектроскопия служит исследователям мощным средством изучения тайн вещества. Вероятно, справедливо будет сказать, что из всех инструментальных методов ИК-спектроскопия наиболее универсальна. [c.9]

    Селективность газоадсорбционного варианта хроматографии обычно гораздо выше, чем газожидкостного. Однако реализации этой высокой селективности ГАХ мешала низкая эффективность газоадсорбционных колонн. По мере увеличения однородности поверхности адсорбентов и усовершенствования способов ее модифицирования, а также методов синтеза новых, более однородных адсорбентов с конца 50-х годов началось развитие газоадсорбционного варианта хроматографии, приведшее к созданию высокоэффективных капиллярных колонн, наполненных небольшими зернами адсорбентов с поверхностью, близкой к однородной. В этом курсе будет рассмотрена газоадсорбционная хроматография не только как высокоселективный и достаточно эффективный метод анализа сложных смесей и как удобный метод изучения адсорбции, но и как важный способ изучения межмолекулярных взаимодействий, а также как экспериментальная основа нового метода определения некоторых параметров структуры молекул. [c.9]

    Изложены современные представления о строении атомов, молекул, кристаллов и о природе химической связи рассмотрены методы изучения структуры веществ. [c.2]

    Замечательный новый спектроскопический метод изучения молекул дало открытие ядерного магнитного резонанса (ЯМР). Смысл этого явления заключается в следующем. Если какое-либо вещество содержит атомы, ядра которых имеют магнитный момент (такими атомами являются водород, азот, фтор, фосфор углерод и кислород имеют немагнитные ядра), то в магнитном поле ядра этих атомов стремятся ориентироваться по полю. В результате существования нескольких ориентаций ядерных моментов в магнитном поле уровни энергии атомов расщепляются на так называемые подуровни сверхтонкой структуры. Как известно из атомной теории, если спин частицы (ядра) равен /, то происходит расщепление уровня энергии на 2у4-1 подуровня, соответствующих разным ориентациям магнитиков в пространстве. Если наложить на образец, помещенный в постоянное магнитное поле, некоторое слабое переменное поле, то при определенных условиях резонанса, когда энергия квантов электромагнитного поля точно равна разности энергетических уровней магнитиков, будет наблюдаться поглощение электромагнитной энергии в образце, которое может быть легко измерено. Условие резонансного поглощения hv—Hg l, где к — постоянная Планка, V — частота электромагнитных колебаний, р — магнитный момент ядра, g — постоянная сверхтонкой структуры, Н — магнитное поле. [c.177]


    Наиболее удобными методами изучения кластеров (НгО) (л>2) являются различные варианты масс-спектроскопической техники [363]. Естественно, что чем ниже температура эксперимента, тем более крупные кластеры (с большим п) удается наблюдать. Так, удалось зарегистрировать в спектре пик, соответствующий п= [368] и /г = 36 (температура 77 К) [369]. При температуре жидкого азота были зарегистрированы положительно заряженные кластеры с л от 1 до 40 [370]. В работе [371] удалось наблюдать отрицательно заряженные кластеры, содержащие вплоть до 50 молекул воды. В этой работе была сделана попытка изучить структуру этих кластеров методом электронной дифракции. Авторы приходят к выводу, что по своей структуре эти кластеры не являются фрагментами кристаллов льда, а аморфны. Были также оценены дипольные моменты кластеров с л от 2 до 6 дипольные моменты кластеров с п = = 3- 6 близки к нулю, что, по мнению авторов, свидетельствует о циклическом характере их структуры [361]. Много экспериментальных данных о существовании и свойствах кластеров, состоящих из нескольких десятков молекул воды, приводится в работе [372]. [c.133]

    Новые данные о внутреннем строении жидкостей были получены позднее в результате исследования полярной структуры молекул, применения методов рентгеновского анализа, изучения [c.161]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Перспективным методом изучения фазовых и полиморфных превращений в НДС является калориметрия. При переходе НДС из одного состояния в другое, например из молекулярного раствора в структурированную жидкость, происходят взаимодействия между молекулами или надмолекулярными структурами, сопровождающиеся тепловыми эффектами [150]. Величина последних может явиться характеристикой, позволяющей оценить тип взаимодействия, степень прочности НДС и др. [c.138]

    Биохимики долгое время пытались выяснить, с чем связана такая фантастическая эффективность и селективность ферментов. За последние 20 лет благодаря развитию новых экспериментальных методов изучения структуры молекул и слежения за скоростью протекания очень быстрых реакций удалось намного глубже понять механизмы действия ферментов. [c.452]

    Один из методов изучения структуры жидкостей основан на исследовании вязкости. Вязкость отражает способность вещества оказывать сопротивление перемещению одной его части относительно другой. Вязкость очень чувствительна к молярной массе, строению молекул и межмолекулярным взаимодействиям. [c.76]

    Химики часто пользуются экспериментальными данными, характеризующими форму кристаллов, поскольку это помогает идентифицировать вещества. Описание форм кристаллов является предметом специальной науки кристаллографии. Метод изучения структуры кристаллов при помощи дифракции рентгеновских лучей, предложенный в 1912 г. немецким физиком Максом фон Лауэ (1879—1960) и усовершенствованный английскими физиками У. Г. Брэггом (1862—1942) и У. Л. Брэггом (1890—1971), стал особенно полезным в последние десятилетия. Значительная часть информации о строении молекул, приводимой в данной книге, получена благодаря применению метода дифракции рентгеновских лучей (рентгеноструктурного анализа). [c.33]

    Следует, однако, подчеркнуть одну принципиальную разницу между структурным анализом кристаллов и дифракционными методами изучения строения вещества в других агрегатных состояниях. Ориентационная неупорядоченность молекул в газах и жидкостях и неупорядоченность структурных элементов в стеклах позволяют получать из дифракционных данных лишь картину строения, усредненную по всем возможным ориентациям. Пространственную архитектуру молекул (в случае газов и жидкостей) или структуры в целом (в случае стекол) приходится восстанавливать, пользуясь приемами индукции, а не дедукции. [c.130]

    Изучению структуры моносахаридов, находящихся в кристаллическом состоянии, посвящен ряд работ, в которых применялся метод рентгеноструктурного анализа Этими работами было показано, что в изученных случаях кристаллы моносахаридов состояли из молекул в пиранозной форме, имеющих наиболее устойчивую кресловидную конформацию (С1 для Д-глюкозы и Д-ксилозы, 1С для Д-арабинозы и -рамнозы). Таким образом, рентгекоструктурный анализ пригоден для исследования структуры, конфигурации и конформации моносахаридов в кристаллическом состоянии. Препятствием к более широкому использованию метода служит общеизвестная трудность расчетов структуры молекулы по рентгенограмме, которая многократно возрастает, если в молекуле отсутствуют тяжелые атомы, как, например, для подавляющего большинства моносахаридов и их производных. Правда, это ограничение в настоящее время в значительной мере уже устранено благодаря развитию вычислительной техники и, по-видимому, окончательно отпадет в ближайшем будущем. Другое существенное затруднение, также технического порядка, связано с получением кристаллов моносахаридов, о чем уже говорилось выше. Наконец, третье ограничение, имеющее принципиальный характер, заключается в том, что рентгеноструктурный анализ не дает даынььх о структуре и конформации моносахаридов в растворах, тогда как именно они представляют для химиков наибольший интерес, а из предыдущего изложения видно, что и структура, и конформация моносахаридной молекулы могут претерпевать сильные изменения при переходе от кристаллического состояния к растворенному. Несмотря на отмеченные слабости, рентгеноструктурный анализ остается одним из наиболее перспективных методов изучения структуры моносахаридов. [c.50]

    В заключение следует подчеркнуть, что совершенствование методов изучения структуры полисахаридов приобрело особое значение в самые последние годы, когда выяснилась исключительно важная биологическая роль смешанных углеводсодержащих биополимеров, при установлении строения которых возникает ряд дополнительных трудностей. Для разрешения этой проблемы необходима разработка методов избирательных расщеплений, позволяющих выделить как полисахаридные и белковые или липидные участки молекулы в отдельности, так и фрагменты, содержащие узлы связи между этими участками. С другой стороны, уже известные методы изучения полисахаридных структур нуждаются в модификации для непосредственного исследования углеводных цепей смешанных биополимеров. [c.635]

    По этой же причине электронография — наиболее эффективный метод изучения строения свободных молекул различных веществ в газе или парах (газовая электронография). Электронограмма молекул в парах представляет собой совокупность диффузных колец, измерение положения и интенсивности которых позволяет найти совокупность межатомных расстояний в молекуле и дать модель ее структуры. При изучении строения молекул объектом служит струя пара при низком давлении (несколько тысяч Па). Газы и летучие вещества в электронографе можно изучать при температуре до 400 °С. [c.204]

    Молекулярная рефракция является, как известно, мерой электронной поляризуемости молекул [308, с. 122]. Поскольку электронная поляризуемость зависит в большой степени от структурных факторов, то молекулярная рефракция служит одним из методов изучения структуры молекул. [c.86]

    Детальный обзор, посвященный изучению ряда гидратированных органических кристаллических структур методами рентгеноструктурного анализа и дифракции нейтронов, выполнен Кларком [21 ]. Приведенные в этом обзоре таблицы содержат данные для гидратированных пептидов, галогенсодержащих соединений, алкалоидов, органических кислот, солей, производных аминокислот и металлорганических соединений. Кристаллографические характеристики включают тип решетки, симметрию, пространственную группу и ее номер, параметры ячейки, число независимых молекул в элементарной ячейке, вычисленные и измеренные значения плотности. [c.512]

    Скорость разложения аммиака на платине обратно пропорциональна концентрации образовавшегося водорода и т. д. Кинетическое изучение механизма гетерогенной каталитической реакции может быть одним из методов изучения свойств поверхностных соединений. Специфика этих соединений состоит в том, что катализатор — твердое тело со сложной электронной структурой — может образовывать соединения с различной энергией связи. Энергия связи молекулы с катализатором зависит от числа уже прореагировавших молекул. Поверхностные соединения богаче по набору возможных энергий связей и менее дискретны по своим свойствам, чем обычные химические соединения. [c.218]

    При уточнении экспериментальных значений констант Генри и атом-атомных потенциалов межмолекулярного взаимодействия при адсорбции хроматоскопический метод из-за его высокой чувствительности к некоторым структурным параметрам молекул сможет стать важным дополнением к ряду других методов изучения структуры молекул, в частности молекул множества биологически активных веществ и их метаболитов, достаточно сильно различающихся по геометрии. [c.204]

    Г. Стюарт. Структура молекулы. Физические методы изучения. ОНТИ, Госуд. Научно-Технич. изд. Украины (1937). [c.207]

    Химические и физические методы изучения Молекул. В создании правильных представлений о строении и свойствах молекул химические методы исследования играют главную роль. На основании элементарного анализа устанавливается эмпирическая формула вещества, а строение подтверждается в ходе исследования характерных для данного вещества химических реакций. Наряду с химическими методами исследования все большее значение приобретают физические методы. Их широкое использование обусловлено рядом преимуществ, например, физические методы, как правило, не вызывают каких-либо изменений в строении молекул изучаемых веществ, они значительно сокращают время и путь исследования. Когда же устанавливаются тонкие различия в структуре молекул (различия в характере связей, реакцрюнной способности групп и атомов, внутримолекулярные превращения и т. п.), физические методы оказываются незаменимыми и единственно возможными методами изучения. В химии используется большое количество физических методов, основанных на зависимости разнообразных физических (электрических, оптических, магнитных и др.) свойств от химической структуры молекул. Ниже в краткой форме рассматривается сущность ряда наиболее разработанных физических методов и их применение для изучения строения молекул. [c.36]

    Рассмотренная в предыдущей главе спектроскопия ПМР хотя и является одним нз наиболее распространенных методов установления структуры, все же дает сведения только о положении в молекуле атомов водорода. Вместе с тем для структурного анализа большее значение имеет углеродный скелет, непосредственная информация о котором может быть получена с помощью спектроскопии ЯМР ставшей сейчас самым совершенным методом изучения С фоения органических молекул. До 1970 г. спектры ЯМР практически оставались недоступными для химиков-органиков. Применение этого метода затруднялось требованием почти 6000-кратного увеличения чувствительности аппаратуры по сравнению с таковой для спектроскопии ПМР, [c.134]

    Л. Н. Теренин и его ученики успешно применяют оптические методы для решения многих проблем катализа. А. Н. Фрумкин разработал совершенный электрохимический метод изучения адсорбции газов и структуры поверхности металлов. А. В. Фрост, Д. П. Добычин, П. Д. Данков и др. для изучения механизма реакции гидрогенизации этилена пользовались измерением электропроводности катализатора во время реакции. О. И. Лейпунский и А. В. Ривдель исполъзовали изменение разности контактных потенциалов для выяснения природы активированной адсорбции. Для изучения ориентации молекул в адсорбционном слое на твердых контактах А, X. Борк воспользовался точными кинетическими исследованиями. С. 3. Рогинский и И. Е. Брежнева для изучения поверхности твердых контактов и происходящих на них процессов воспользовались омечеными атомами, применяя искусственные радиоактивные изотопы. Рентгенографическое исследование влияния параметров решетки и размеров первичных кристаллов на активность и избирательность действия катализаторов, а также рентгеновский анализ промышленных катализаторов проводили А. М. Рубинштейн, Г. С. Жданов, В. П. Котов и Г. Д. Любарский. Исследование поверхностных слоев методом дифракции быстрых электронов в течение нескольких лет ведет 3. Г. Пинскер. Электронномикроскопические исследования катализаторов проводят А. Б. Шехтер, С. 3, Рогинский и др. В последние годы для изучения катализаторов начали применять термический анализ. [c.11]

    Методы изучения пространственной структуры. При изучении пространств, структуры Б. существует два принципиальных подхода исследование в р-ре и в кристаллич. состоянии. Осн. метод, дающий непосредственную информацию о пространста расположении атомов в молекуле Б.,-рентгеноструктурный анализ. Он применим только для хорошо кристаллизующихся Б. При этом наряду с кристаллом нативного Б. необходимо получать производные, содержащие тяжелые атомы, к-рые были бы изоморфными исходному Б., т.е. давали бы подобные кристаллич. структуры. Тяжелый атом вводится в молекулу Б. при вымачивании кристалла в соответствующем р-ре илн в процессе кристаллизации. Иногда используют хим. модификацию Б., напр, и-хлормеркурийбензоатом по ЗН-группам. [c.252]

    Поскольку радиоспектры ядерного магнитного резонанса столь чувствительны к природе химической связи и строению атомной группы, в которую входит протон, то мы имеем здесь исключительную возможность для изучения структуры сложных органических молекул с помощью линейчатого спектра. Для идентификации тех или иных групп необходимо изучение модельных соединений и составление каталогов, характеризующих изменение положения линий поглощения нри изменении структуры молекулы (так называемых химических сдвигов, рис. 54). Метод ядерного магнитного резонанса применительно к химии переживает еще период первоначального накопления фактов. Составление каталогов частот еще только началось. Однако уже имеются примеры, когда с его помощью удалось блестяще справиться с проблемой расшифровки строения очень сложных органических соединений (макроциклические терпены, фтороорганические соединения и т. д.) при относительно малой затрате труда. Ясно, что для дальнейшего изучения структуры сложных молекул этот метод представляет собой весьма совершенное орудие. [c.178]

    Из приведенных выше примеров следует, что используемые модели реальной структуры молекул весьма условны и способны лишь приближенно учесть молекулярную форму. Однако при расчетах комбинаторной составляющей термодинамических свойств согласно достаточно грубому приближению Ставермана более тщательное рассмотрение строения молекул вряд ли целесообразно. Описанный выше способ учета геометрии молекул аналогичен часто применяемому в решеточных моделях без вакансий. Отметим, что теоретически более последовательные методы изучения комбинаторики систем из частиц различной формы ограничены в настоящее время достаточно простыми системами в лучшем случае удается рассмотреть смеси, моделируемые прямоугольными параллелепипедами с неодинаковыми длинами ребер [353]. [c.312]

    Электронные спектры поглощения 4-замещенных 1,2,4-трназинов являются ресьма информативным методом изучения структуры триазинового ядра. Их практическое использование затруднено сложностью отнесения максимумов поглощения к определенным структурным элементам молекулы триазина. Это можно проиллюстрировать на примере УФ-спектра 4-амино-3-метилтио-6-трет-бутил-1,2,4-триазин-5(4Н)-она (LV). В электронном спектре раствора соединения LV в ацетонит- [c.84]


Смотреть страницы где упоминается термин Молекула структура, методы изучения: [c.503]    [c.217]    [c.40]    [c.248]    [c.79]    [c.214]    [c.474]    [c.330]    [c.113]    [c.491]    [c.23]    [c.288]    [c.255]   
Общая и неорганическая химия (1994) -- [ c.66 , c.67 , c.68 , c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Метод Молекулы

Метод структур



© 2025 chem21.info Реклама на сайте