Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латексные покрытия напряжений при формировании

    Природа подложки оказывает существенное влияние при формировании покрытий из пленкообразующих других типов на внутренние напряжения и свойства покрытий. Было изучено [120] влияние природы подложки на внутренние напряжения и свойства покрытий. Из данных о кинетике нарастания и релаксации внутренних напряжений при формировании покрытий из бутадиен-стирольных латексов при 20 °С на поверхности стекла, капроновой ткани и хлопчатобумажной подложке (ткани имели одинаковое полотняное переплетение) следует, что в покрытиях, сформированных на тканях, внутренние на пряжения в 1,5—2 раза больше, чем на стекле. Нарастание внутренних напряжений в этом случае обусловлено большей адгезией латексных покрытий к тканям и частичным армированием латексных покрытий из-за проникновения пленкообразующего в ткань на глубину около 50 мкм. При хранении покрытий в условиях их формирования внутренние напряжения в пленках на тканях релаксируют медленней. Уменьшая адгезию покрытий к подложке, можно значительно понизить величину внутренних напряжений. С учетом этого модифицирование тканей осуществлялось различными соединениями, применяющимися в текстильной промышленности (табл. 2.17). [c.95]


    Существенные различия в структуре различных слоев покрытий, а также зависимость структуры от толщины пленки являются, вероятно, одной из основных причин значительного влияния толщины покрытий на внутренние напряжения и другие свойства Толщина пленки оказывает существенное влияние на процесс пленкообразования и внутренние напряжения при формировании покрытий из других классов пленкообразующих. В [151] показано, что внутренние напряжения в латексных покрытиях и скорость их нарастания и /релаксации зависят от толщины пленки. При нанесении на сформированную латексную пленку покрытия из стеклообразного полимера, например из эпоксидной или полиэфирной смолы, поливинилхлорида, полиэтилена и других полимеров, критические внутренние напряжения, вызывающие самопроизвольное отслаивание латексной пленки от стеклянной подложки, можно создать только при ее толщине, не превышающей 30 мкм. При большей толщине латексной пленки с повышением толщины нано- [c.114]

    Закономерности в изменении внутренних напряжений от толщины наблюдались для латексных систем различного химического состава. Немонотонное изменение внутренних напряжений (в зависимости от толщины покрытий наблюдалось для алкилакрилатов, содержащих в боковых цепях различные функциональные группы. Эти закономерности не зависят от условий формирования латексных покрытий. С увеличением прочности пленки критическая толщина, соответствующая образованию дефектной структуры, смещается в область больших толщин. [c.116]

    Специфика структурных превращений определяет незавершенность релаксационных процессов при формировании покрытий и оказывает существенное влияние на кинетику нарастания и релаксации внутренних напряжений, изменение их теплофизических параметров. Исследованию внутренних напряжений при формировании покрытий из дисперсий полимеров долгое время не уделяли должного внимания, а экспериментальные исследования в этой области полностью отсутствовали. Предполагалось [3], что величина внутренних напряжений в покрытиях из дисперсий полимеров незначительна и не оказывает влияния на их свойства. Постановка работ в этом направлении обусловлена разработкой технологии получения латексных покрытий на мягких подложках, тканях или волокнистых основах, являющихся составными элементами дублированных материалов типа клеенки, искусственной кожи, плащевых и технических тканей, а также нетканых материалов, где дисперсии применяются в качестве связующего для склеивания волокон. Внутренние напряжения, возникающие при формировании подобных материалов, вызывали их коробление в процессе формирования, значительно ухудшали качество изделий, а в ряде случаев вызывали их разрушение. С учетом этого возникла необходимость в разработке физико-химических путей понижения внутренних напряжений в покрытиях из дисперсий полимеров. Изучение кинетики нарастания и релаксации внутренних напряжений на различных этапах формирования покрытий дает возможность исследовать механизм пленкообразования в этих системах. [c.207]


    Приведенные данные свидетельствуют о том, что изучение только кинетики испарения жидкой фазы и изменения электросопротивления не позволяют разобраться в механизме пленкообразования из латексных систем. Из данных, полученных этими методами, следует, что скорость сушки пленок существенно возрастает с увеличением полярности полимера, с уменьшением длины и разветвленности боковых цепей и с введением полярных групп определенной природы. Однако эти методы позволяют исследовать только начальную стадию пленкообразования и не дают возможности проследить за протеканием структурных превращений на последующих стадиях формирования пленок, ответственных за структуру и свойства покрытий. С учетом этого для исследования процесса формирования были разработаны методы, которые могут быть применены для изучения структурных превращений на различных этапах пленкообразования из дисперсий полимеров. В [30] для решения этой задачи применены поляризационно-оптический метод исследования внутренних напряжений и импульсный метод определения теплофизических параметров. [c.206]

    Об этом свидетельствуют электронно-микроскопические данные о структуре пленок на стадии окончания процесса сушки и на стадии установления равновесных значений внутренних напряжений и теплофизических параметров (рис. 4.12). Видно, что после удаления влаги латексные частицы в покрытиях сохраняются. На стадии окончания процесса формирования и стабилизации механических и теплофизических свойств наблюдается деформация латексных частиц и перегруппировка образующих их структурных элементов. Из сопоставления структурных данных с характером изменения свойств в процессе пленкообразования вытекает, что процесс формирования пленок из дисперсий полимеров проходит в две стадии. Первая стадия, обусловленная удалением влаги и возникновением локальных связей между структурными элементами, сопровождается замедлением релаксационных процессов и нарастанием внутренних напряжений до максимального предельного значения. Вторая стадия, более продолжительная, связана с деформированием латексных частиц и перегруппировкой входящих в их состав струк- [c.211]

    Из полученных кинетических зависимостей можно сделать вывод о том, что формирование структуры латексного покрытия, связанное с образованием в нем новых контактов и связей, происходит прн ничтожном содержании влаги в системе. На характер возникающей структуры, по-вн-дпмому, оказывают влияние взаимодействие макромолекулярных сегментов, расположенных на поверхности полимерных частиц, и связи, возникающие между имеющимися на этой новерхности полярными группами и подложкой от соотношения силы обоих взапмодейст-вий, очевидно, зависят величины внутренних напряжений. [c.66]

    ГИЙ на поверхность стеклянной подложки наносились слои из синей и черной красок, входящих в серию 2513, толщиной 5—7 мкм. Получены данные о влиянии природы непористых подложек (например, стекла), черной и синей красок на кинетику нарастания внутренних напряжений при формировании покрытий из акрилового латекса БМ. Наиболее быстро процесс формирования заканчивается на синем подслое. Применение подслоя из краски соцро-вождается понижением внутренних напряжений. Однако одновременно с этим понижается адгезия покрытий с 5 (на стекле) до 2 МПа (на красочном подслое). Уху ДШ1ение адгезии пююрытия к подслою связано с тем, что в состав офсетных красок входят полимеризующиеся композиционные олифы на основе канифольно-малеиновой или фенолоформальдегидных смол [122], содержащие значительно меньшее число активных групп, способных специфически взаимодействовать с латексным покрытием. [c.97]

    Релаксационные процессы при формировании покрытий из дисперсий полимеров оказывают существенное влияние на изменение теплофизических параметров [59]. На рис. 4.10 и 4.11 приведены данные об изменении коэффициентов теплопроводности и температуропроводности в процессе формирования латексных покрытий. Видно, что теплофизические параметры, как и внутренние напряжения, в процессе формирования изменяются немонотонно вначале они уменьшаются, а затем нарастают. Время достижения минимального значения теплофизических параметров соответствует достижению равновесной влажности. При хранении покрытий в условиях формирования теплофизические параметры возрастают. Скорость нарастания теплофизических параметров и их абсолютная величина зависят от природы полимера. Из сравнения рис. 4.8 и 4.10 следует, что теплофизические параметры изменяются анти-батно возникающим в латексных покрытиях внутренним напряжениям. Наибольшие теплофизические характеристики обнаруживаются в менее полярном латексе СКС-50. С увеличением содержания метакриловой кислоты в латексе СКД-1 теплофизические параметры покрытий уменьшаются. Согласно представлениям о механизме переноса тепла в полимерах, связывающим теплофизические свойства со скоростью распространения фононов, следовало бы ожидать [c.209]


    Исследовался [59] процесс формирования покрытий из дисперсий полимеров, полученных из алкилакрилатов с различными функциональными группами. Особенность эмульсионной полимеризации при получении дисперсий из полярных мономеров состоит в том, что в процессе полимеризации функциональные группы выполняют роль стабилизатора и концентрируются на поверхности латексных частиц. Это приводит к тому, что при формировании покрытий из таких дисперсий наибольшие внутренние напряжения возникают в покрытиях из дисперсий, содержащих на поверхности частиц группы, способные участвовать в специфическом межмолекулярном взаимодействии с образованием водородных связей. В качестве моделей латексных полимеров с различными полярными группами были выбраны [60] сополимеры алкилакрилатов с одинаковым содержанием метакри-ловой кислоты, амида метакриловой кислоты и нитрила акриловой кислоты (4—5 мол. %). Сополимеризация проводилась эмульсионным методом с равным содержанием одного и того же эмульгатора (сульфанола) и при других одинаковых условиях. [c.70]

    Характер влияния функциональных групп на внутренние напряжения и другие физико-механичесние свойства пленок зависит также от химического состава и жесткости основной цепи. В работах [61, 62] показано, что для латексов на основе сополимера бутилакрилата и бутилметакрилата введение тех же функциональных групп по-иному сказывается на механических свойствах покрытий (табл. 2.8). В этом случае наибольшие внутренние напряжения возникают в покрытиях из сополимера с амидными группами эти покрытия отличаются также большей адгезией. В то же время большая прочность обнаруживается при введении в систему карбоксильных групп. Иной характер изменения свойств покрытий из этих систем связан со специфическими особенностями структурообразования. Более низкая прочность пленок из латексов с амидными и нитрильными группами для этих латексов связана с формированием неоднородной глобулярной структуры. В то же время структура латексных частиц из полимера с карбоксильными группами состоит из развернутых молекул и не выявляется даже при длительном кислородном травлении образцов. Внутренние напряжения в покрытиях из эластомеров, как и из олигомеров, полимери-зующихся с образованием пространственно-сетчатой структуры, коррелируют с изменением адгезионной прочности покрытий в зависимости от природы функциональных групп. Это свидетельствует о том, что адгезионное взаимодействие для эластомерных покрытий также вносит решающий вклад в торможение релаксационных процессов при их формировании. [c.72]

    Из приведенных результатов можно заключить, что тонкие латексные пленки из различных эластомеров толщиной менее 30 мкм отличаются малой величиной внутренних напряжений и НИ131К0Й акор,остью их релаисации, обуслав-ленной потерей системой высокоэластических свойств в результате разрушения латексных частиц на исходные структурные элементы при взаимодействии их с подложкой и снижения подвижности структурных элементов. При большей толщине пленки скорость релаксационных процессов и величина внутренних напряжений определяется спецификой структурных превращений при формировании латексных пленок. При толщине, меньшей критической, скорость релаксационных процессов обусловлена характером образующихся в покрытиях надмолекулярных структур. С увеличением толщины покрытий в этой области внутренние напряжения возрастают, что связано с увеличением. межмолекулярного взаимодействия по сравнению с гонкими пленками с малой подвижностью структурных элементов. В то же время скорость релаксации внутренних напряжений с повышением толщины покрытий в этой области толщин возрастает при хранении их в условиях формирования вследствие проявления [c.116]

    Значительные внутренние напряжения и продолжительность формирования покрытий из дисперсий полимеров ухудщают качество материалов из-за нестабильности свойств, а также вызывают самопроизвольное деформирование и закручивание их в процессе производства. Синтез латексов с упорядоченной структурой латексных частиц позволяет улучщить физико-механические свойства и сократить период формирования пленок. Получение латексных частиц с упорядоченной структурой может быть осуществлено путем изменения химического состава и концентрации функцио- [c.212]


Смотреть страницы где упоминается термин Латексные покрытия напряжений при формировании: [c.71]    [c.96]    [c.117]    [c.208]    [c.116]    [c.209]    [c.211]    [c.219]    [c.219]   
Структура и свойства полимерных покрытий (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Латексные ВПС

Формирование



© 2025 chem21.info Реклама на сайте