Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура покрытий зависимость от природы подложки

    В главе 2 рассмотрена роль незавершенности релаксационных процессов в формировании структуры и свойств покрытий. Особое внимание уделено изучению кинетики нарастания и релаксации внутренних напряжений, определяющих долговечность полимерных покрытий. Для проведения этих исследований был применен разработанный в ИФХ АН СССР поляризационно-оптический метод исследования напряжений и адгезии полимерных покрытий с автоматической регистрацией результатов. Это позволило изучить зависимость внутренних напряжений от различных физико-химических факторов с целью разработки способов их понижения, таких, как физическое состояние полимера, густота пространственной сетки, молекулярная масса, природа функциональных групп и характер их распределения, природа подложки, прочность взаимодействия на границе полимер—твердое тело и других. [c.8]


    ЗАВИСИМОСТЬ СТРУКТУРЫ И СВОЙСТВ ПОЛИМЕРНЫХ ПОКРЫТИЙ от ПРИРОДЫ ПОДЛОЖКИ [c.23]

    При исследовании зависимости структуры отвержденных покрытий от природы подложки и условий формирования широкое применение нашел метод углеродных реплик с предварительным кислородны.м травлением образцов. Без предварительного травления этим методом невозможно четкое выявление структуры, что обусловлено отсутствие.м достаточной рельефности поверхности из-за наличия наряду с плотными упорядоченными структурными элемента.ми окружающих их менее организованных низкомолекулярных фракций. В то же время методом ультразвукового диспергирования, а также методом срезов с блоков и покрытий удалось выявить структуру без травления образцов из-за большей плотности надмолекулярных структур по сравнению с фракциями, расположенны.ми. между ни.ми. При последующем кислородном травлении срезов размер и характер глобулярных структур не изменялся, что позволяло выявить их более четко. С учетом этого можно было ожидать, что проведение полимеризации под пучком электронного микроскопа позволит выявить отдельные стадии формирования надмолекулярных структур. [c.138]

    Обнаруженные закономерности в изменении надмолекулярной структуры ненаполненных и наполненных покрытий в зависимости от природы подложки проявляются для покрытий, сформированных в различных условиях. Число двойных связей ненасыщенного полиэфира и стирола, вступающих во взаимодействие в процессе полимеризации, можно регулировать путем изменения температуры и продолжительности формирования покрытий. Из кинетических данных об изменении внутренних напряжений следует, что при толщине 300 мкм процесс формирования покрытий при 20 °С заканчивается через 20 сут, а при 80 °С — через 6 ч. Для покрытий, сформированных в этих условиях, были получены сравнительные данные о влиянии режима отверждения на их структуру. В покрытиях, отвержденных при 20 °С на подложках с малой адгезией, формируется структура глобулярного типа. При формировании покрытий в этих же условиях на стали наблюдается образование сетчатой структуры из анизодиаметричных структурных элементов. Использование меньшего числа центров структурообразования и более рыхлая упаковка структурных элементов в граничных слоях покрытий, отвержденных при 20 °С, обусловлены малой подвижностью структурных элементов в этих условиях формирования. С повышением температуры до 80 °С уменьшается вязкость полиэфиров и увеличивается доступность для структурных элементов большего числа активных центров структурообразования на поверхности подложки. [c.30]


    Было проведено систематическое исследование [32—50] надмолекулярной структуры сетчатых полимеров с учетом влияния химического состава пленкообразующего, природы подложки и наполнителей и условий нанесения и формирования. Для этой цели применялись как косвенные методы, основанные на изучении кинетики изменения физико-механических и теплофизических свойств при формировании покрытий и пленок из мономерных и олигомерных систем, так и непосредственное исследование их надмолекулярной структуры и густоты пространственной сетки в зависимости от различных физико-химических факторов. [c.129]

    Эти уравнения являются весьма упрощенными, так как в них не учтено влияние на величину внутренних напряжений различных физико-химических факторов скорости отверждения по толщине образцов, неоднородности их структуры и неравномерного распределения связей, природы подложки и др. Экспериментальные данные, полученные для различных полимерных покрытий [53—56], свидетельствуют об отсутствии однозначной зависимости внутренних напряжений от величины усадки и разности коэффициентов линейного расширения. Усадка максимальна в начальный период формирования, когда из системы удаляется наибольшее количество жидкой фазы или в полимеризации участвует наибольшее число функциональных групп. Однако на этой стадии отверждения в покрытиях практически не возникают внутренние напряжения. Резкое нарастание последних наблюдается при переходе системы в студнеобразное состояние вследствие замедления релаксационных процессов. Из этих данных следует, что внутренние напряжения определяются заторможенной усадкой. Значительное уменьшение усадки и коэффициента линейного расширения наблюдается при введении в полимерные системы активных наполнителей, взаимодействующих с полимером с образованием водородных или химических связей, однако внутренние напряжения при этом возрастают от 2 до 5 раз в результате резкого торможения релаксационных процессов. [c.39]

    Кавитационная стойкость покрытий определяется многими факторами характером и скоростью движения среды, природой подложки, структурой и физическим состоянием материала пленки, ее адгезией к подложке. Если выразить кавитационную стойкость покрытия как /С = Тр//г, т. е. отношением времени разрушения пленки к ее толшине, то между К и скоростью кавитационного потока V наблюдается следующая зависимость  [c.81]

    Виды разрушения полимерных материалов могут быть различными в зависимости от способов их получения и условий эксплуатации. Для полимерных покрытий характерны потеря блеска (начальная стадия разрушения), меление, структурные дефекты, растрескивание и отслаивание для эластомерных систем, формирующихся на гибких подложках (тканях, волокнистых основах), — коробление, закручивание и растрескивание. В связи с этим внутренние напряжения в полимерных покрытиях зависят от различных физико-химических факторов строения макромолекул и их конформации характера образуемых ими надмолекулярных структур числа, природы и распределения возникающих между ними локальных связей условий нанесения, отверждения и эксплуатации толщины пленки, природы твердой поверхности (подложки, наполнителей, армирующих материалов) и др. [51]. [c.37]

    Для изучения структуры сформированных покрытий в зависимости от условий полимеризации и природы подложки применялся метод углеродных реплик с предварительным кислородным травлением образцов [32, 95]. Без травления структура их четко не выявлялась, что обусловлено отсутствием достаточной рельефности поверхности из-за наличия наряду с более плотными упорядочеи-ны.ми структурами менее организованных низкомолекулярных фракций. Методом срезов с блоков и покрытий удалось выявить их структуру без травления образцов из-за большей плотности надмолекулярных структур по сравнению с фракциями, расположенными между ними (рис, 3.11). Последующее кислородное травление этих срезов не изменяло размера и характера глобулярных структур и позволяло выявить их более четко (рис. 3.11, в, г). При сравнении структуры, полученной методом реплик и срезов, оказалось, что методом реплик выявляются более сложные вторичные надмолекулярные образования, состоящие из структурных элементов значительно меньшего размера, обнаруживающихся при разрушении таких структур при изготовлении срезов. С учетом этого для исследования структурных превращений в процессе полимеризации были приготовлены пленки из олигомеров толщиной 10—50 нм. Методика получения образцов заключалась в следующем [37]. В углубление диаметром 3—5 мм на предметном стекле наносилась капля раствора полиэфирной смолы в ацетоне концентрацией от 9 до 75%, затем с помощью пипетки в каплю вдувался пузырек воздуха. Сеточка объектодержателя с коллодиевой пленкой-подложкой прикасалась к поверхности образца. В результате соприкосновения пузырек разрывался и на пленке-подложке оставался тонкий слой раствора. Препарат сразу же просматривался под электронным микроскопом, так как избыток ацетона быстро удалялся из тонкой пленки. Предварительно было установлено, что процесс формирования пленок из растворов ненасыщенных полиэфиров при 20 °С заканчивается в течение нескольких суток, а более 70% двойных связей стирола и ненасыщенного полиэфира расходуется в течение 4—6 ч. С повышением температуры отверждения до 80 °С более 90% двойных связей используется в течение 40—60 мин. Процесс полимеризации значительно ускоряется при [c.139]


    Различная степень агрегации и упорядочения структурных элементов в отдельных слоях полиэфирных покрытий, сушественная зависимость их структуры от природы подложки и условий формирования определяются, вероятно, дефектностью структуры исходных макромолекул их разнозвенностью, статистическим распределением функциональных групп, широким молекулярно-массовым распределением, способностью молекул олигоэфира и сшиваюшего агента к гомополимеризации. Дефектность структуры покрытий и их неоднородность способствуют замедлению скорости протекания релаксационных процессов при их формировании и локализации внутренних напряжений по границам раздела структурных элементов, различающихся уровнем надмолекулярной организации. Влияние природы подложки на структурные преврашения возрастает при формировании полиэфирных покрытий на пористых материалах типа древесины, асбоцемента, бетона и др. [c.148]


Смотреть страницы где упоминается термин Структура покрытий зависимость от природы подложки: [c.8]    [c.147]    [c.71]    [c.115]   
Структура и свойства полимерных покрытий (1982) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Подложка природа



© 2025 chem21.info Реклама на сайте