Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латексные покрытия структура

    Существенные различия в структуре различных слоев покрытий, а также зависимость структуры от толщины пленки являются, вероятно, одной из основных причин значительного влияния толщины покрытий на внутренние напряжения и другие свойства Толщина пленки оказывает существенное влияние на процесс пленкообразования и внутренние напряжения при формировании покрытий из других классов пленкообразующих. В [151] показано, что внутренние напряжения в латексных покрытиях и скорость их нарастания и /релаксации зависят от толщины пленки. При нанесении на сформированную латексную пленку покрытия из стеклообразного полимера, например из эпоксидной или полиэфирной смолы, поливинилхлорида, полиэтилена и других полимеров, критические внутренние напряжения, вызывающие самопроизвольное отслаивание латексной пленки от стеклянной подложки, можно создать только при ее толщине, не превышающей 30 мкм. При большей толщине латексной пленки с повышением толщины нано- [c.114]


    Закономерности в изменении внутренних напряжений от толщины наблюдались для латексных систем различного химического состава. Немонотонное изменение внутренних напряжений (в зависимости от толщины покрытий наблюдалось для алкилакрилатов, содержащих в боковых цепях различные функциональные группы. Эти закономерности не зависят от условий формирования латексных покрытий. С увеличением прочности пленки критическая толщина, соответствующая образованию дефектной структуры, смещается в область больших толщин. [c.116]

    Из этих данных следует, что свойства латексных покрытий и механизм пленкообразования зависят от строения макромолекул и характера образуемых ими надмолекулярных структур, определяющих скорость торможения релаксационных процессов. Об этом свидетельствуют также данные о резком нарастании внутренних [c.208]

    В книге сделан систематизированный обзор работ, проведенных в области латексной полимеризации как в СССР, так и за рубежом. При этом наиболее подробно разбираются влияние способа проведения латексной полимеризации на свойства латекса, связь между растворимостью мономеров в воде и кинетикой полимеризации, возникновение в процессе полимеризации надмолекулярных структур и зависимость свойств образующихся покрытий от этих структур, влияние химического состава полимера (наличие функциональных групп) на механизм формирования покрытий из латексов. Отдельно рассматривается стабильность латексных систем, что имеет особенно важное значение для этих пленкообразователей. [c.6]

    К выводу о том, что капиллярные силы и силы поверхностного натяжения не являются основными факторами, определяющими свойства пленок, пришел С. С. Воюцкий [28, 29, 38]. В результате обобщения различных механизмов пленкообразования, рассмотренных в указанных теориях, он пришел к выводу, что процесс пленкообразования из дисперсий полимеров является многостадийным и связан с проявлением тех или иных сил на различных этапах пленкообразования. Решающее значение отводится последней стадии пленкообразования, когда из пленки полностью удаляется вода. Согласно этим представлениям процесс пленкообразования из латексов протекает в три стадии. На первой стадии происходит испарение воды и сближение латексных частиц до соприкосновения под действием сил поверхностного натяжения при этом предполагается, что каучуковые латексы могут деформироваться до исчезновения жидких прослоек. На второй стадии удаляется вода из пространства между частицами, что приводит к их деформированию. На этой стадии большое значение придается силам поверхностного натяжения и действию капиллярного давления. Это способствует уменьшению поверхности внутренних полостей между соприкасающимися частицами. Взаимодействие частиц происходит по участкам поверхности, не покрытым поверхностно-активным веществом. Наиболее важной стадией, определяющей структуру и свойства пленок, является третья, связанная с перераспределением поверхностно-активных веществ и коалесценцией частиц. Предполагается, что защитное вещество адсорбционного слоя уходит с поверхности. Свободные концы макромолекул могут при этом диффундировать через уплотненную поверхностную пленку сливаю- [c.198]


    Исследование структурных превращений при формировании покрытий из дисперсий обычно начинают с определения размера частиц в дисперсиях и пленках, а также плотности их упаковки. Методом электронной микроскопии с применением бромирования установлено, что размер частиц дисперсии изменяется в пределах 0,01— 0,3 мкм. При изучении структуры частиц в бутадиеновых латексах и его производных установлено [47], что наиболее крупные частицы обнаруживаются в разбавленных дисперсиях бутадиен-стирольных латексов, более мелкие — в латексах из бутадиенового каучука (рис. 4.1). Дисперсии латексов СКС-50 и СКН-40 отличаются от дисперсии латекса СКД-1 более неоднородной полидисперсной структурой. Наряду с частицами диаметром, составляющим десятые доли микрометра, обнаруживаются частицы диаметром 50 нм. В покрытиях, сформированных из этих латексов, сохраняется глобулярная структура (рис. 4.2). Однако размер частиц уменьшается в процессе сушки, особенно значительно (в 1,5—2 раза) в пленках из латекса СКС-50. Полидисперсность латексов СКС-50 и СКН-40 приводит к образованию неоднородной структуры с неплотной упаковкой латексных частиц, при которой отдельные крупные частицы разделены промежутками, соизмеримыми с их размером или [c.202]

    Приведенные данные свидетельствуют о том, что изучение только кинетики испарения жидкой фазы и изменения электросопротивления не позволяют разобраться в механизме пленкообразования из латексных систем. Из данных, полученных этими методами, следует, что скорость сушки пленок существенно возрастает с увеличением полярности полимера, с уменьшением длины и разветвленности боковых цепей и с введением полярных групп определенной природы. Однако эти методы позволяют исследовать только начальную стадию пленкообразования и не дают возможности проследить за протеканием структурных превращений на последующих стадиях формирования пленок, ответственных за структуру и свойства покрытий. С учетом этого для исследования процесса формирования были разработаны методы, которые могут быть применены для изучения структурных превращений на различных этапах пленкообразования из дисперсий полимеров. В [30] для решения этой задачи применены поляризационно-оптический метод исследования внутренних напряжений и импульсный метод определения теплофизических параметров. [c.206]

    При исследовании структуры латексных пленок методом электронной микроскопии на различных стадиях пленкообразования установлено [47], что после удаления влаги латексные частицы не коалесцируют, четко сохраняя свою форму и границы раздела. Однако в процессе сушки размер их уменьшается, особенно значительно (до 30%) в пленках из латекса СКС-50. Период установления равновесных значений внутренних напряжений для указанных латексов различается более чем на порядок от этих же параметров покрытий из растворов этих же полимеров (рис. 4.8 и 4.9). [c.210]

    Об этом свидетельствуют электронно-микроскопические данные о структуре пленок на стадии окончания процесса сушки и на стадии установления равновесных значений внутренних напряжений и теплофизических параметров (рис. 4.12). Видно, что после удаления влаги латексные частицы в покрытиях сохраняются. На стадии окончания процесса формирования и стабилизации механических и теплофизических свойств наблюдается деформация латексных частиц и перегруппировка образующих их структурных элементов. Из сопоставления структурных данных с характером изменения свойств в процессе пленкообразования вытекает, что процесс формирования пленок из дисперсий полимеров проходит в две стадии. Первая стадия, обусловленная удалением влаги и возникновением локальных связей между структурными элементами, сопровождается замедлением релаксационных процессов и нарастанием внутренних напряжений до максимального предельного значения. Вторая стадия, более продолжительная, связана с деформированием латексных частиц и перегруппировкой входящих в их состав струк- [c.211]

    На свойства покрытий существенно влияют также характер взаимного распределения несовместимых компонентов, строение и структура исходных латексных частиц. Как правило, глобулярная или фибриллярная структура частиц предопределяет и формирование соответствующей структуры пленок. Латексные пленки фибриллярной структуры по механическим свойствам нередко приближаются к пленкам, полученным из растворов тех же полимеров, однако они уступают последним по водостойкости из-за наличия в их составе эмульгаторов. [c.48]

    Казалось бы, пленки с наилучшими свойствами можно получить при полной коалесценции первичных латексных частиц, т. е. при максимальной гомогенизации структуры пленок и покрытий. Однако, как это ни парадоксально на первый взгляд, для повышения прочности необходима определенная степень неоднородности структуры. Неоднородность структуры способствует перегруппировкам, сглаживающим пики внутренних перенапряжений. Слияние поверхностных слоев полимерных глобул латекса в процессе образования пленки протекает довольно легко, поэтому для получения плотной пленки не требуется полной коалесценции содержимого глобул. Высокая упорядоченность расположения латексных глобул приводит к образованию прочного армирующего каркаса, состоящего из твердых яд р латексных частиц. Такой каркас связан с эластичной дисперсионной средой (поверхностными слоями) аутогезионными силами. Прогрев пленок при температурах, превышающих температуру текучести полимера, приводит к коалесценции ядер латексных частиц, полной гомогенизации пленки и соответственно к уменьшению прочности, [c.69]


    Из полученных кинетических зависимостей можно сделать вывод о том, что формирование структуры латексного покрытия, связанное с образованием в нем новых контактов и связей, происходит прн ничтожном содержании влаги в системе. На характер возникающей структуры, по-вн-дпмому, оказывают влияние взаимодействие макромолекулярных сегментов, расположенных на поверхности полимерных частиц, и связи, возникающие между имеющимися на этой новерхности полярными группами и подложкой от соотношения силы обоих взапмодейст-вий, очевидно, зависят величины внутренних напряжений. [c.66]

    При увеличении глубины пропитки бумаги латексом уменьшается скорость протекания релаксационных процессав, способствуя нарастанию внутренних напряжений. Эти данные хорошо согласуются с представлениями Лыкова [43] о механизме возникновения внутренних напряжений в коллоидных капиллярно-пористых материалах в процессе сушки, согласно которым величина внутренних напряжений пропорциональна градиенту влагосодержания между центральными и поверхностными слоями материалов. Увеличение глубины пропитки латексом способствует неравномерному распределению влаги в процессе сушки и увеличению градиента влагосодержания. Структура подложки оказывает существенное влияние на структуру латексных покрытий. На рис. 1.20 при- [c.36]

    При оценке специфики адгезионного взаимодействия воднодиспер-сионных клеев с субстратом необ.ходимо учитывать наличие в клеевом шве эмульгатора и других компонентов дисперсии, которые не удаляются из шва вместе с дисперсионной средой (с водой). Если эмульгатор несовместим с полимером, то при коалесценции полимерных латексных частиц он выделяется на их поверхность и мешает образованию сплошной и гомогенной пленки. Правда, если субстрат пористый и может поглощать эмульгаторы, защитные коллоиды и другие вещества, которые при формировании пленки не растворяются в ней, то они могут таким образом удаляться с границы раздела пленка — субстрат. В этом случае обеспечиваются наилучшие условия для адгезионного взаимодействия латексных частиц с субстратом и их полной коалесценции. Так, при нанесении акриловой дисперсии БМ-12 на стекло и бумагу в первом случае покрытие сохраняет глобулярную структуру, характерную для дисперсий, а на бумаге образуется более однородная и гомогенная пленка. [c.72]

    Распространено мнение, что наилучшие свойства покрытий достигаются при полной коалесценции первичных латексных частиц, т. е. максимально возможной гомогенизации структуры пленок и покрытий. При изучении пленкообразо-вания латекса сополимера винилхлорида с винилиденхлоридом (ВХВД-65) было обнаружено, что при повышении температуры пленкообразования вплоть до Т тек сополимера (80° С) предел вынужденной эластичности пленок возрастает. Однако при нагревании сформированных пленок при температурах 100—140° С разрушаюш,ее напряжение пленок уменьшалось, несмотря на гомогенизацию структуры пленки. При этом термодеструкция сополимера ВХВД-65 практически отсутствовала. Естественно, что различия в прочности пленок обусловлены структурными изменениями полимера при дополнительном прогреве. Если основным структурным элементом пленок, прогретых при 80° С, является первичная латексная частица (1>ср = 760А ),то для пленок, прогретых при 140° С, характерна однородная бесструктурная поверхность с дискретными включениями единичных глобул. Пленки с глобулярной структурой характеризуются большим модулем упругости и низким относительным удлинением (50—80%) при разрыве, тогда как после гомогенизации разрушающее напряжение уменьшается, а относительное удлинение при разрыве возрастает до 800% [56]. [c.67]

    По способу производства ковры делятся на прошивные (тафтинговые), тканые, иглопробивные, вязально-прошивные (малимо), трикотажные, клееные. Высота ворса имеет первостепенное значение для акустических, теплозащитных и других эксплуатационных свойств коврового материала. Наиболее широко применяются в автомобилестроении материалы с высотой ворса (5 + 1) мм. При большей высоте ворс деформируется, а при меньшей — ковер не обладает необходимыми защитными свойствами. От устойчивости ворсового покрытия к истиранию зависит эксплуатационная долговечность ковра. С целью предотвращения образования статического электричества, гниения материала и образования плесени ковровые покрытия обрабатывают антистатическими и антисептическими препаратами. Кроме того, для исключения проникания через ковер воды на его изнаночную сторону наносят латексное или другое полимерное покрытие. Такое покрытие укрепляет ворс ковра и, кроме того, способствует сохранению физической структуры материала в процессе эксплуатации. Применение объемно отформованных ковровых покрытий пола автомобиля повышает его эстетические свойства, улучшает акустику в салоне. С целью придания коврам формоустойчивости на их изнаночную сторону наносят термопластичный полимер — полиэтилен, способный при нагревании к формованию. Нанесение полиэтилена производится с помощью струйного агрегата. После нагревания поверхность полимерного покрытия выравнивается с помощью каландра, и в охлажденном виде материал сматывается в рулон. Наилучшей формуемостью обладают ковровые материалы с подвижной структурой, в частности трикотажный, нетканые различного способа производства. Формование ковра производят методом прессования при давлении 0,6—0,7 МПа в течение 2 мин после предварительного разогрева заготовки в течение 2 мин при температуре 200— 220 °С. [c.231]

    При введении эмульгатора изменяется распределение водорастворимого мономера между фазами и композиционный состав сополиме ра по сравнению с сополимеризацией в отсутствие эмульгатора. Это было показано при исследовании сополимеризации в водной фазе этилакри-лата с метилолакриламидом . При сополимеризации в строго одинаковых условиях алкилакрилатов с небольшим количеством (5 вес. %) водорастворимых мономеров, сильно различающихся коэффициентом распределения между гидрофобной мономерной и водной фазами, образуются латексные частицы, отчетливо различающиеся своей надмолекулярной структурой (см. рис. 1.11, а и б), что сильно сказывается на свойствах получаемых из них покрытий. Наличие фибриллярной ориентации в случае сополимеров с метакриламидом (см. рис. 11, а) приводит к резкому возрастанию механической прочности и водостойкости покрытий по сравнению с покрытиями на основе сополимеров с метакриловой кислотой. [c.31]

    Характер влияния функциональных групп на внутренние напряжения и другие физико-механичесние свойства пленок зависит также от химического состава и жесткости основной цепи. В работах [61, 62] показано, что для латексов на основе сополимера бутилакрилата и бутилметакрилата введение тех же функциональных групп по-иному сказывается на механических свойствах покрытий (табл. 2.8). В этом случае наибольшие внутренние напряжения возникают в покрытиях из сополимера с амидными группами эти покрытия отличаются также большей адгезией. В то же время большая прочность обнаруживается при введении в систему карбоксильных групп. Иной характер изменения свойств покрытий из этих систем связан со специфическими особенностями структурообразования. Более низкая прочность пленок из латексов с амидными и нитрильными группами для этих латексов связана с формированием неоднородной глобулярной структуры. В то же время структура латексных частиц из полимера с карбоксильными группами состоит из развернутых молекул и не выявляется даже при длительном кислородном травлении образцов. Внутренние напряжения в покрытиях из эластомеров, как и из олигомеров, полимери-зующихся с образованием пространственно-сетчатой структуры, коррелируют с изменением адгезионной прочности покрытий в зависимости от природы функциональных групп. Это свидетельствует о том, что адгезионное взаимодействие для эластомерных покрытий также вносит решающий вклад в торможение релаксационных процессов при их формировании. [c.72]

    Из приведенных результатов можно заключить, что тонкие латексные пленки из различных эластомеров толщиной менее 30 мкм отличаются малой величиной внутренних напряжений и НИ131К0Й акор,остью их релаисации, обуслав-ленной потерей системой высокоэластических свойств в результате разрушения латексных частиц на исходные структурные элементы при взаимодействии их с подложкой и снижения подвижности структурных элементов. При большей толщине пленки скорость релаксационных процессов и величина внутренних напряжений определяется спецификой структурных превращений при формировании латексных пленок. При толщине, меньшей критической, скорость релаксационных процессов обусловлена характером образующихся в покрытиях надмолекулярных структур. С увеличением толщины покрытий в этой области внутренние напряжения возрастают, что связано с увеличением. межмолекулярного взаимодействия по сравнению с гонкими пленками с малой подвижностью структурных элементов. В то же время скорость релаксации внутренних напряжений с повышением толщины покрытий в этой области толщин возрастает при хранении их в условиях формирования вследствие проявления [c.116]

    Значительные внутренние напряжения и продолжительность формирования покрытий из дисперсий полимеров ухудщают качество материалов из-за нестабильности свойств, а также вызывают самопроизвольное деформирование и закручивание их в процессе производства. Синтез латексов с упорядоченной структурой латексных частиц позволяет улучщить физико-механические свойства и сократить период формирования пленок. Получение латексных частиц с упорядоченной структурой может быть осуществлено путем изменения химического состава и концентрации функцио- [c.212]

    Значительные различия в механизме формирования и свойствах покрытий и пленок из латексов акриловых сополимеров различного химического состава обусловлены специфическими особенностями структуры латексных частиц и распределением полярных групп на их поверхности. Так, например, покрытия из латекса сополимера метилакрилата, бутилакрилата и метакриловой кислоты МБМ-ЗС характеризуются глобулярной структурой с диаметром глобул около 30 нм (рис. 4.20). В покрытиях из латекса сополимера ме- тилакрилата с винилацетатом и метакриловой кислотой МВМ-1,5С наблюдается неоднородная структура из анизодиаметричных структурных элементов. Пленки из латекса сополимера БМ отличаются [c.214]

    Использование замещенного фенола винилацетиленовой структуры — диметил-винилэтинилфенола для синтеза новых олигомеров обусловлено его высокой функциональностью. Замещенный фенол способен вступать в реакции поликонденсации и в реакции полимеризации и сополимеризации по ненасыщенным связям винилацетиленового радикала. Винилэтинилфенольные олигомеры по сравнению с обычными фенольными смолами обладают лучшей совместимостью с другими полимерами, в частности с каучуками. Отвержденные каучуко-смоляные композиции отличаются высокими прочностью, эластичностью, теплостойкостью до 200 °С (в ряде случаев до 300 °С), химической стойкостью, маслобензостой-костью, адгезией к различным материалам, хорошими электроизоляционными свойствами. Эти композиции применяются в народном хозяйстве в качестве клеев для резин и металлов, антикоррозионных покрытий по металлу, пропиточных составов, термостойких связующих, герметиков, резиновых и латексных изделий повышенной прочности. —..... [c.26]


Смотреть страницы где упоминается термин Латексные покрытия структура: [c.70]    [c.34]    [c.71]    [c.122]    [c.94]    [c.183]    [c.37]    [c.115]    [c.203]    [c.209]    [c.215]   
Структура и свойства полимерных покрытий (1982) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Латексные ВПС



© 2025 chem21.info Реклама на сайте