Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фриделя энергия активации

    Энергия активации хлорметилирования —11,1 кДж/моль для хлорида железа(III) и 27,2 кДж/моль —для хлорида цинка показывают, что реакции относятся к чрезвычайно быстрым с низким энергетическим барьером. Хлорметилированные продукты (ХМП) можно использовать самостоятельно или в качестве промежуточных для дальнейших синтезов. Например, фосфорилированием можно получать производные, содержащие фосфорнокислые группы [307, 308]. Реакция может быть осуществлена в оптимальных условиях при отношении ХМП к хлориду металла 1 2, и десятикратном избытке хлорида фосфора(III). На первой стадии реакции вр течение 15 мин степень фосфорилирования составляет 70—85 %. По активности в этой реакции катализаторы Фриделя — Крафтса располагаются в следующий ряд  [c.291]


    На рис.2.9 приведена температурная зависимость изменения констант скорости убыли толуола, представленных в табл.2.17. Левая ветвь кривой (область температур выше 298 К) характерна для типичной реакции алкилирования арена мономером (Е = 26 кДж/моль). Излом при переходе в более низкотемпературную область (значение Е близко к нулю) указывает на преобладающую роль процесса полимеризации изобутилена. Диссоциация ионных пар при понижении температуры повышает активность ионов карбония как в отношении реакции роста цепи, так и в отношении ограничения ее при использовании толуола. При этом значение EдJ = -25,1 кДж/моль (энергия активации изменения степени полимеризации изобутилена) в присутствии толуола близко к Ед процесса, протекающего в отсутствие арена, т.е. в области отрицательных температур имеет место полимеризация изобутилена с ограничением цепи толуолом или своеобразная реакция алкилирования по Фриделю - Крафтсу. [c.103]

    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа ХИ1, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа при аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор-5-этоксиметил-2-метилпиримидина с бензолом, не имеющая места в менее активированном ряду пиридина [119]. Кроме того, эти соединения часто легко восстанавливаются цинковой пылью и другими мягкими восстановителями. Хотя описано много примеров частичного нуклеофильного обмена или восстановления полигалогенопиримидинов, относительная реакционная способность положений 2 и 4 (или 6) экспериментально точно не установлена по-видимому, в обоих случаях она должна быть приблизительно равной. Соотношение получаемых соединений в большей степени зависит от легкости их выделения. [c.208]


    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа XIII, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа прй аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор- [c.208]

    Обычно катализаторами катионной полимеризации являются катализаторы Фриделя -- Крафтса BF3 Al b Sn U Ti U, т. е. сильные электроноакцепторные вещества. Они проявляют свою активность в присутствии небольших количеств сокатализатора (например, следов Н2О) для образования гидрид-иона (Н+). Энергия активации катионной полимеризации обычно не превышает 63 кДж/моль (15 ккал/моль) и поэтому скорость ее очень высока, а температурный коэффициент отрицателен (т. е. с понижением температуры скорость реакции возрастает). Папример, полимеризация изобутилена под действием BF3 проходит за несколько секунд при —100° С, причем образуется полимер очень высокой молекулярной массы. Обычно принятый механизм катионной полимеризации вклю чает образование комплексного соединения катализатора и сокатализатора, обладающего свойствами сильной кислоты  [c.19]

    Реакционная способность П. х. обусловлена гл. обр. присутствием в его макромолекулах групп SO l. Длительное нагревание П. х. при 125—150Х вызывает частичное разложение этих групп. Выше 150°С идет заметная деструкция полимера с выделением газообразных (SO2, НС1) и жидких продуктов, а также сшивание, приводящее к уменьшению растворимости П. х. Разложение полимера ускоряется в присутствии солей тяжелых металлов, катализаторов Фриделя — Крафтса, кислорода, нек-рых перекисей. Эпоксидные смолы, MgO и другие акцепторы НС1 ингибируют этот процесс. Энергия активации термического отщепления SOj и НС1 от макромолекулы П. х. 54,6 кдж/моль (13,0 ккал/моль), энергия активации окисления П. х. 73,9 кдж/молъ (17,6 ккал/молъ). [c.52]

    Изучены кинетика и механизм полимеризации циклопропана по Фриделю—Крафтсу под действием А1Вгз — НВг. Добавление воды, метанола или трихлоруксусиой кислоты к реакционной смеси вызывает полное ингибирование процесса. Так же и иод замедляет реакцию. Энергия активации равна 6 ккал моль. [c.179]

    Зависимость соотношения изомеров от температуры позволяет заключить, что перегруппировка идет независимо от реакции Фриделя — Крафтса уже в реагенте К—Х/А1Хз (перегруппировка Вагнера — Меервейна, см. гл. 8) и характеризуется значительной энергией активации. Для изученной в чистом виде перегруппировки в системе СНд— СНа— Вг/А1Вгд была найдена энергия активации 19,1 ккал/моль [268] эта величина значительно превосходит энергии активации при алкилировании по Фриделю — Крафтсу (см. табл. 7.8). [c.506]


Смотреть страницы где упоминается термин Фриделя энергия активации: [c.116]    [c.52]    [c.84]    [c.342]    [c.323]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Фридель

Фриделя-Крафтса энергия активации

Энергия активации



© 2025 chem21.info Реклама на сайте