Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переработка хлорсодержащих отходов

    Методы переработки хлорсодержащих отходов с целью получения полезных продуктов, в том числе хлорида водорода, подразделяют на огневое обезвреживание, каталитическое окисление, хлорирование, окислительное хлорирование.и хлоролиз. Самый надежный и универсальный метод — огневое обезвреживание, сущность которого заключается в высокотемпературном окислении хлорорганических веществ за счет собственного тепла кубовых отходов или за счет тепла, выделяющегося при сгорании дополнительно подаваемого жидкого либо газообразного топлива. Огневое обезвреживание кубовых остатков, полученных после перегонки отработанных растворителей с водяным паром, является заключительной стадией применения хлорорганических растворителей. В этом случае кубовые отходы практически не содержат хлорсодержащих соединений и поэтому их сжигают в топках котельных или в небольших печах типа Вихрь . [c.212]


Рис. 40. Установка для переработки хлорсодержащих отходов с производства винилхлорида Рис. 40. Установка для переработки хлорсодержащих отходов с производства винилхлорида
    Способ переработки хлорсодержащих отходов зависит от типа производства. Они используются в процессе получения целевых хлорсодержащих соединений либо сжигаются (на суше или на судах в открытом море) с обязательным улавливанием образующегося НС1. [c.148]

    На рис. 73 представлена технологическая схема высокотемпературной переработки хлорсодержащих органических отходов, позволяющая существенно упростить и интенсифицировать процесс получения соляной кислоты. Отходы подают в циклонный реактор вертикального типа с нижним выпуском газов. В закрученный поток продуктов сгорания, содержащий хлористый водород, непосредственно в реактор впрыскивают воду или раствор соляной кислоты. В результате испарения продукты сгорания быстро охлаждаются до 100--120°С и поступают на ступени абсорбции, где осуществляются конденсация паров воды, растворение в них хлористого водорода и получение соляной кислоты с концентрацией 30 %. Эксперименты на стендовом циклонном реакторе подтверди- [c.219]

    При промышленном получении хлора и щелочей методом электролиза хлоридов, переработке руд титана, ниобия, тантала и других металлов методом хлорирующего обжига, получения хлористоводородной кислоты и многих хлорорганических соединений в атмосферу выбрасываются газы, содержащие хлор, хлороводород и другие соединения хлора. В последнее время источниками поступления НС1 в окружающую среду стали печи сжигания хлорсодержащих промышленных отходов и бытового мусора, содержащего полимерные материалы. [c.233]

    Камера сгорания. Камера сгорания служит для ограничения пламени и для увеличения переноса излучательной энергии к спою топлива. В США наиболее часто используются камеры со стенками, выложенными огнеупорными материалами. Однако в новых установках водоохлаждаемые стенки все в большей степени заменяют огнеупорные, так как в этом случае устраняются проблемы, связанные с износом огнеупоров при изменении температурного цикла печи. Кроме того, за счет теплопереноса к водоохлаждаемой стенке уменьшается объем газа, поступающего на обработку в систему контроля загрязнения воздуха. Файф и Бойер [22] делают вывод о том, что в печах с водоохлаждаемыми стенками для сжигания коммунальных отходов экономия средств, затрачиваемых на эксплуатацию огнеупорных материалов, на водяное охлаждение и на переработку большого объема газов, превышает расходы на большие первоначальные капиталовложения, когда производительность установок составляет свыше 300 т/сут, даже если нет рынка сбыта для выделяемого тепла. При меньшей производительности печей и при наличии рынка сбыта для выделяемой энергии экономия становится более весомой. Однако при использовании печей с водоохлаждаемыми стенками могут возникнуть серьезные проблемы, связанные с коррозией. Опыт эксплуатации установок для сжигания мусора в Европе [23, 24] показал, что поверхности труб вблизи колосниковой решетки и в пластинах перегревателя часто сильно корродируют и требуют замены всего после 1000 ч их эксплуатации. Часто основным виновником коррозии считается H I, выделяющийся в процессе сжигания хлорсодержащей пластмассы, однако на самом деле проблема это гораздо более сложная [10, 25]. В настоящее время полагают, что на скорость коррозии основное влияние оказывают высокие концентрации щелочных металлов, свинца и цинка в осадках на стенках труб печей, в которых сжигают мусор. Хотя мусор является топливом с низким содержанием серы, тем не менее сера имеет тенденцию накапливаться в осадках на стенках, увеличивая вероятность протекания щелочно-сульфатной коррозии. Данные табл.6.7 показывают, что эти осадки могут содержать вьюокие концентрации щелочных металлов, тяжелых металлов и серы. На рис.6.7 приведена диаграмма аналогичного распределения концентрации осадков на лопатках и корпусе вытяжного вентилятора установки для сжигания отходов, изображенной на рис.6.3. Кроме того, степень коррозии зависит от температуры металла, из которого изготовлены трубы, и от атмосферы печных газов (восстановительная или окислительная). Предполагается, что наиболее серьезные проблемы, связанные с коррозией, возникают при температурах металла, превышающих 480°С в окислительной среде, и при температурах порядка 360—370°С в восстановительной атмосфере. Ряд мер можно предпринять для уменьшения коррозии металлов, из которых изготовлены трубы. К ним относятся а) создание путем правильного размещения сопел для [c.233]


    Заказ-наряд 0.35.01(Т2г)/76-80 "Разработать техническое решение по переработке хлорсодержащих отходов промышленности для низкотемпературной (солевой) технологии производства цемента" Установлена возможность использования хлоркальциевых продуктов с примесью шлама,являющихся отходом содового производства, в качестве компонентов сырьевой смеси в низкотемпературной технологии производства цемента. Предполагается разработка технологии двух видов продуктов - жидкого и твердого. Жидкий хлор-кальцяевый продукт получается путем смешения в определенном со- [c.5]

    В последние годы все большее применение в промышленности для переработки хлорсодержащих отходов находят процессы хлоролиза, т. е. одновременного хлорирования и пиролиза образующихся продуктов за счет выделяющейся теплоты реакции. Процесс хлоролиза более сложный и дорогой, чем огневое обезвреживание отходов, но он позволяет получать ценные хлорорганические растворители — тетрахлорметан, трихлорэтен и тетрахлорэтен. Процесс протекает при температуре 500— 700 °С. [c.215]

    Одним из наиболее опасных типов отходов, основным методом переработки которых служит сжигание, являются галогеноорганические отходы. Фтористые и бромистые отходы менее распространены, но их обрабатывают тем же способом, что и хлорсодержащие материалы. Хлорированные органические материалы могут содержать водную фазу или определенное количество воды, но в основном они представляют собой хлорированное органическое соединение или ряд таких соединений. Отходы с высоким содержанием хлора имеют низкую теплоту сгорания, так как хлор, аналогично брому и фтору, препятствует процессу горения, а малохлорированные органические соединения могут гореть без дополнительного топлива. Галогеноорганические отходы при обработке сначала подвергают гидролизу образующийся кислый газ обычно растворим в воде и поэтому легко удаляется при водной абсорбции в насадочной колонне. Хлористый и фтористый водород абсорбируются легче, чем бромистый водород. [c.138]

    Наиболее опасны загрязнения неразлагающиеся и токсичные. Токсическое действие может сказываться в течение нескольких часов или даже нескольких лет.-В воде могут присутствовать микрокомпоненты, содержание которых даже в очень малых количествах может стимулировать процессы коррозии и биоповреждений (табл. 59.1). Большая часть загрязняющих веществ попадает в почву из воздуха в виде пыли или с атмосферными осадками. Загрязнение почвы происходит также и твердыми промышленными отходами. Наибольшее количество отходов образуется при добыче и переработке полезных ископаемых. Значительную опасность представляет загрязнение почвы хлорорганическими пестицидами. В почву, кроме прямого внесения, они попадают через растения, воду и атмосферу. При фотохимическом окислении и чгидролизе многие пестициды быстро разрушаются, но препараты диенового синтеза, хлорсодержащие соединения и соединения типа ДДТ сохраняются длительное время [c.732]

    Хлорорганические отходы перерабатывают также в ценные хлорсодержащие продукты хлорированием в кипящем слое инертного носителя или в присутствии катализатора хлорирования при 200—700 °С. Однако при этом возникают трудности с дезактивацией носителя или катализатора, что вызывает необходимость выжигания отложений на контактах. Неизбежно образуется НС1, который необходимо утилизировать. Поэтому целесообразно проводить оксихлорирование или совмещать процессы хлорирования и оксихлорирования или каталитического окисления и оксихлорирования в присутствии катализатора Дикона (Пат. 819364, Белы. 1978, Пат. 1920685, ФРГ, 1976). В настоящее время распространены процессы хлоролиза для переработки отходов, когда хлорирование и пиролиз хлорорганических продуктов за счет выделившейся теплоты протекают в одном реакторе. Процесс хлоролиза более сложный и дорогой, чем сжигание отходов, но он дает ценные продукты при незначительных затратах сырья и более низких затратах. Основными продуктами реакции являются четыреххлористый углерод, перхлорэтилен и трихлорэтилен. Описаны химизм хлоролиза и влияние параметров процесса на распределение продуктов реакции (Пат. 1275700, Великобрит., 1972). Схема процесса хлоролиза приведена на рис. 8 технико-экономичес-кие показатели процесса из расчета на 100 кг ССЦ приведены ниже [345, 346]. [c.211]


Смотреть страницы где упоминается термин Переработка хлорсодержащих отходов: [c.216]    [c.60]    [c.220]   
Основные хлорорганические растворители (1984) -- [ c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Отходы, переработка



© 2025 chem21.info Реклама на сайте