Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

При мышечном сокращении происходит

    Важнейшей особенностью функционирования мышц является то, что в процессе мышечного сокращения происходит преобразование химической энергаи АТФ непосредственно в механическую энергию сокращения и движения. Это явление свойственно только живым организмам. Изучение механизма мышечной деятельности является проблемой не только биохимической. Достижения последних лет в этой области связаны с интеграцией биохимических, биофизических и электронно-микроскопических исследований строения и функционирования мышц. [c.124]


    Но все остальные основные биологические процессы (синтез белков и нуклеиновых кислот, ферментативные биохимические реакции, деление клеток, мышечное сокращение, распространение нервного возбуждения и т. д.) происходят во тьме, без участия световых квантов. Эти темновые процессы тоже квантовые, ибо это химические процессы. Ясно, что в любой химической реакции происходит перемещение электронов, изменение электронного состояния системы. Окислительно-восстановительные биохимические процессы, составляющие сущность дыхания, наглядно об этом свидетельствуют. [c.325]

    Огромное значение для регуляции работы систем биохимических процессов имеет пространственная организация этих систем. Уже в пределах клеток эукариот многие процессы пространственно разобщены, поскольку происходят в различных органеллах. Распределение биохимических процессов по отдельным участкам клеток (компартментализация) будет рассмотрено в 10.4. Уже этот вопрос выходит за рамки собственно биохимии и является в большей мере предметом клеточной биологии. Еще дальше от биохимии отстоят более высокие уровни пространственного разобщения биологических процессов по разным органам многоклеточных организмов. Так, уже говорилось о регуляторной роли эндокринной и нервной систем. Их изучение является в первую очередь предметом физиологии, которая в последние десятилетия превратилась из описательной науки в область знания, прочно опирающуюся на сведения о биохимических и биофизических процессах, протекающих в животных и растениях. Тем не менее, чтобы дать читателю некоторое представление о взаимосвязи физиологических и биохимических процессов, в 10.5 вкратце рассматривается вопрос о биохимических аспектах мышечного сокращения - один из первых физиологических вопросов, в котором такое сложное явление, как превращение химической энергии в сокращение мышц, было в значительной мере осмыслено на основе биохимических концепций, таких, как ферментативный катализ и конформационные переходы. [c.421]

    У многоклеточных организмов важнейшим элементом пространственной организации биохимических процессов является распределение их между разными типами клеток, а также межклеточные взаимодействия. Многие процессы происходят фактически лишь с участием высокоорганизованного конгломерата клеток. К их числу относится мышечное сокращение (см. 10.6). [c.432]

    Мышечное сокращение является процессом, в ходе которого происходит превращение химической энергии, запасенной в виде макроэргических пирофосфатных связей в молекулах АТФ, в механическую работу. По объему, который приходится на долю мышц у высших организмов, в том числе у человека, и по масштабу биохимических превращений, обслуживающих прямо или косвенно мышечное сокращение, этот процесс занимает первое место среди всех физиологических процессов. Даже в состоянии покоя на его долю приходится до 40% от всего объема метаболизма, а при интенсивной механической работе организма эта доля может достичь 75%. Непосредственными участниками процесса сокращения являются два белка — миозин и актин. Большое число молекул каждого из этих белков объединены в виде специальных конструкций, вне которых сокращение совершаться не может. [c.435]


    Движущей силой этого сокращения является гидролиз АТФ. При рассмотрении роли АТФ в мышечном сокращении нужно учесть важную особенность комплекса миозина с АТФ. Этот комплекс легко образуется и в нем за короткое время происходит гидролиз АТФ, но процесс на этой стадии затормаживается вследствие того, что АДФ и ортофосфат прочно удерживаются в комплексе. Быстрая 436 [c.436]

    По всей вероятности, сходным образом происходит мышечное сокращение в живых системах поэтому В. Кун назвал описанные полиэлектролитные системы химическими мускулами . [c.76]

    Что происходит в мышцах, когда человек поднимает груз Это давняя биофизическая задача, занимались ею много. Мышечному сокращению посвящено очень большое число работ, и конца им пока не предвидится. [c.247]

    В живых организмах мышечное сокращение также обусловлено взаимодействием белка с Са при протекании внутримолекулярных или межмолекулярных реакций. В работах Куна были исследованы производные системы ПВС-Си " , поливиниламины и другие соединения, способные к образованию комплексов с ионами металлов. В такой системе удлинение происходит за счет разрушения хелата при восста- [c.123]

    Имеется еще другой, новый и довольно многообещающий путь к пониманию функции мышцы, начало которому было положено открытием того факта, что мышечное сокращение, по существу, происходит в замкнутой системе. Этот путь — термодинамика. И здесь уже были получены некоторые весьма интересные результаты. [c.233]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Реакцию катализирует фермент креатинкиназа (АТФ креатин—фосфотрансфераза, К. Ф. 2. 7. 3. 2). Креатин( сфат служит источником энергии для процесса мышечного сокращения, при этом он превращается в креатинин, сопряженной реакции происходит синтез молекулы АТФ. [c.22]

    Мышечное сокращение является сложным механохимическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей. [c.130]

    Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большего количества энергии по сравнению с состоянием покоя. Однако энергообеспечение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Анаэробные пути ресинтеза АТФ включаются лишь при очень интенсивной работе (ЧСС более 200 уд./мин). [c.158]

    В миозиновых нитях различают три фрагмента, принимающие участие в механизме мышечного сокращения, а именно активный центр для гидролиза АТФ, энергия которого преобразуется в механическую энергию движения поверхности, комплементарные актиновым нитям, с помощью которых происходит сцепление актиновых и миозиновых нитей рецепторы для восприятия регуляторных сигналов со стороны актиновых нитей. [c.480]

    Расслабление мышцы (релаксация) происходит после прекращения поступления двигательного нервного импульса. При этом проницаемость стенки цистерн саркоплазматического ретикулума уменьшается, и ионы кальция под действием кальциевого насоса, использующего энергию АТФ, уходят в цистерны. Их концентрация в саркоплазме быстро снижается до исходного уровня. Снижение концентрации кальция в саркоплазме вызывает изменение конформации тропонина, что приводит к фиксации молекул тропомиозина в определенных участках актиновых нитей и делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное положение. [c.133]

    При отсутствии взаимодействия между миозином толстых нитей и актином тонких эти нити могут перемещаться относительно друг друга между двумя крайними состояниями (рис. 129). Одно из этих состояний предельно растянутое, при котором имеет место лишь незначительное перекрывание толстых и тонких нитей. Второе состояние — предельно сокращенное, при котором толстые нити максимально вдвинуты между тонкими и достигают своими концами пластинки. Мышечное сокращение происходит в результате согласованного перехода сарко-меров всех миофибрилл, участвующих в формировании мышцы, из предельно растянутого в полностью или частично сокращенное. [c.436]


    Согласно одной из существующих гипотез, молекула актомиозина состоит из нитей миозина и актина, соединенных друг с другом боковыми поверхностями. Поскольку миозин способен сокращаться, а актин не обладает этой способностью, сокращение одного миозина должно привести к искривлению всего акто-миозинового волокна [127] (фиг. 36). Согласно другому взгляду [124, 126], мышечное сокращение происходит в результате соеди- [c.190]

    Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мьппечного волокна в целом. [c.131]

    Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну. Эта волна повышенной проницаемости передается через нерв-но-мышечный синапс на Т-систему саркоплазматической сети и в конечном счете достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана ) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей - тропонину - и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т. е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90°. Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую), то между мышечными нитями образуется довольно большое количество поперечных мостиков, или спаек. На электронной микрофотографии (рис. 15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков. [c.131]

    Важная роль фосфатов в процессах метаболизма стала ясна после того, как были выяснены химические детали гликолиза и установлено, какую роль в этом процессе играют АТР, аденозиндифосфат (ADP) и неорганический фосфат (Р ). Вначале АТР рассматривали как переносчик фосфатных радикалов в процессе фосфорилирования. Роль АТР в биохимической энергетике была установлена в экспериментах, показывающих, что в процессе мышечного сокращения происходит распад АТР и креатинфос-фата и что их ресинтез осуществляется за счет энергии, поступающей от протекающих в мышце окислительных процессов. Окончательную ясность внес Липман, который ввел представление о богатых энергией фосфатах и богатой энергией фосфатной связи и указал на их роль в биоэнергетике. [c.113]

    Соотношение количества свободного креатина и креатинфосфата в мышечной ткани сильно варьирует в покоящейся мышце накапливается креатинфосфат, при сокращении происходит распад АТФ, но за счет креатинкиназной реакции она регенерирует, что приводит к увеличению свободного креатина и уменьшению креатинфосфата. [c.189]

    Интенсивный Г. происходит в скелетных мышцах, где он поставляет энергию для мышечных сокращений, а также в печени, сердце, мозге животных и человека. В клетках осуществляется тонкая регуляция окислит, и анаэробного обмена Подавление Г. дыханием в присут. О2 (эффект Пастера) обеспечивает клетке наиб, экономный механизм образования богатых энергией соединений. В тканях, где такой эффект отсутствует (напр., в эмбриональных и опухолевых), Г. протекает очень активно. В нек-рых тканях с интенсивным Г. наблюдается подавление тканевого дыхания (эффект Крабтри). [c.580]

    Хорошо известно, что ионы кальция поступают в цитоплазму в ответ на нервную стимуляцию и что именно они вызывают различные ответные реакции в организме, такие, например, как мышечное сокращение. Весьма вероятно, что в результате присоединения ионов Са- к специфическим центрам связывания (как это имеет место, например, в каль-ций-связывающем белке карпа) в молекуле происходят конформационные изменения, инициирующие биологические ответные реакции. Кальций-связывающий белок содержит интересную систему внутренних полярных групп, связанных между собой специфическим образом с помощью водородных связей (рис. 4-5, ). Присоединение ионов кальция может вызывать перестройку этих внутренних связей (гл. 2, разд. Б.7) и изменять тем самым характер взаимодействия этого белка (функция которого точно не известна) с другим белком (ср., например, с действием тропонина С, разд. Е.1). В других кальций-связывающих центрах в белках содержатся остатки у-карбоксиглутаминовой кислоты, способной образовывать хелатные комплексы (дополнение 10-Г). [c.270]

    Важную группу гелей составляют гели с большим количеством ионогенных групп, в том числе гели различных по- лиэлектролитов, белков, в которых большую роль играют электрохимические явления. Они приобретают особое значение в гелях полиэлектролитов, образованных гибкими макромолекулами с высокой плотностью зарядов. В этом случае изменение степени ионизации ионогенных групп приводит к значительным изменениям объема геля, обусловленным электростатическим отталкивательным взаимодействием одноименно заряженных групп. Так, например, Качальский показал, что в гелях или волокнах полиакриловой кислоты, содержащих по одной СОО--группе в каждом звене цепи, путем смещ-ения pH или замены Na-солей на менее диссоциированные Ва-соли, можно вызвать обратимые удлинения в 8—10 раз аналогичные опыты производились на гелях полиальгиновой кислоты. По мнению Кирквуда и Риземана, подобные явления могут иметь место при мышечном сокращении, в результате процессов ферментативного фосфорилирования и дефосфорилирования. Замечательно, что в описанных процессах происходит непосредственный переход изменений химической энергии в механическую работу (хемомеханический процесс), который [c.210]

    Действие на нервно-мышечные соединения. Мышечные судороги происходит сокращение межреберных мышц, которое делает дыхание более затрудненным. Это никотиноподобное действие наступает при более высоких концентрациях фосфор-органических соединений, чем мускариноподобное. Происходит также демиэлинизация нервных волокон, что отрицательно сказывается на функционировании периферической нервной системы, парасимпатической системы, а также преганглионарной части симпатической системы. [c.537]

    В. А. Энгельгардт и М. Н. Любимова, производя свои исследования над сократительным веществом мышц — белком миозином, обладающим, как было показано теми же авторами (стр. 417), выраженными ферментативными (аденозинтрифосфатазными) свойствами, обнаружили, что особым образом приготовленные миозиновые нити при взаимодействии с аденозиптрифосфа-том в определенных условиях резко изменяют свои механические свойства (эластичность и растяжимость). Одновременно происходит расщепление аденозинтрифосфата с образованием АДФ и Н3РО4. Эти наблюдения сразу же привлекли всеобщее внимание, наметили возможность объяснения самого механизма превращения химической энергии в механическую работу и заложили фундамент для нового направления в биохимии — механохимии мышечного сокращения. [c.425]

    Динамическая Б., исследующая превращения веществ в организме, начиная с момента поступления в него питательных веществ вплоть до образовапия выводимых из организма конечных продуктов обмена. Основное содержание динамич. Б. составляет промежуточный (интермедиарный) обмен веществ, связанный с обменом энергии. Промежуточный обмен (метаболизм) приводит, с одной стороны, к переходу питательных веществ в вещества, являющиеся составными химич, частями тела (ассимиляция, анаболизм), а с другой — к распаду входящих в состав тола веществ до конечных продуктов обмена, таких, как вода, углекислый газ, мочевина и т. д. (диссимиляция, катаболизм), В ходе промежуточного обмена процессы синтеза и распада веществ тесно связаны друг с другом, 3) Ф у н к ц и о н а л ь п а я Б., имеющая своей задачей зскрытие химич. основ функциональной деятельности, напр, синтеза специфич. веществ в клетках, выделения различных веществ железами в ходе секреции, химич. механизма мышечного сокращения, нервного возбуждения и торможения, химич. механизма передачи наследственных свойств и т. д. В этой области Б. происходит органич. слияние задач и способов исследования морфологии (изучение структуры), биохимии и биофизики (изуче- [c.218]

    Важную группу гелей составляют гели с большим количеством, ионогенных групп, в том числе гели различных полиэлектролитов, белков, в которых большую роль играют электрохимические явления. Они приобретают особое значение в гелях полиэлектролитов, образованных гибкими макромолекулами с высокой плотностью зарядов. В этом случае изменение степени ионизации ионогенных групп приводит к значительным изменениям объема геля, обусловленным электростатическим отталкивательным взаимодействием одноименно заряженных групп. Так, например, в гелях или волокнах полиакриловой кислоты, содержащих по одной СОО"-группе а каждом звене цепи, путем смещения pH или замены Ма-солей на менее диссоциированные Ва-соли, можно вызвать обратимые удлинения в 8—10 раз (стр. 106). Аналогичные опыты производились на гелях полиальгиновой кислоты. По мнению Ж. Кирквуда и Ризе-мана, подобные явления могут иметь место при мышечном сокращении в результате процессов ферментативного фосфорилирования и дефосфорилирования в частности, они возможны на нитях белка актина в мышечном волокне. При мышечном сокращении обратимые деформации, однако, редко превосходят 30—40%. Замечательно, что в описанных процессах происходит непосредственный переход изменений химической энергии в механическую работу (хемомеха-нический процесс), который, несомненно, лежит в основе мышечного сокращения, хотя его конкретный механизм еще нельзя считать выясненным. [c.187]

    Следовательно, возбудимость мышцы возникает при изменении ионного коэффициента Лёба. Сдвижение ионного соотношения в сторону преобладания одновалентных ионов вызывает возбуждение, сдвиг в сторону увеличения двухвалентных ионов вызывает тормозящее, угнетающее возбудимость действие. Нормально мышцы возбуждаются под влиянием раздражения со стороны нерва. Нервный импульс вызывает возбуждение мышцы, и только вслед за этим следует мышечное сокращение. Вполне вероятно, что под влиянием нервного импульса происходит сдвижение ионного коэффициента Лёба в мышце. Это, в частности, доказывается экспериментами самого Лёба, произведенными им над колоколом медузы. [c.140]

    Но как при мышечном сокращении, так и прн брожении не происходит освобождения энергии в таком количестве, как при полном окислении глюкозы. Это зависит от того, что подавляющая часть свободной энергии исходного материала остается в продуктах реакции. Она становится доступной для использования лишь при условии дальнейшего распада этих продуктов. Так, например мышца, работающая в анаэробных условиях, может использовать только 32 000 калорий вместо тех 674 000 калорий, которые освобождаются из того же количества глюкозы при ее полном аэробном окислении. Это происходит от того, что в образующихся из глюкозы двух молекулах, хюлочной кислоты остается около 640-000 калорий. [c.374]

    Свободные моносахариды, глюкоза например, в случае брожения дрожжевым соком получают фосфорную кислоту от аденозинтрифосфата (АТФ). Перенос фосфатного остатка с аденозинтрифосфата совершается при участии фермента гексокипазы. Первым продуктом фосфорилирования является гек-созо-6-фосфат. В случае же мышечного сокращения первым продуктом фосфорилирования гликогена, как уже известно, будет гексозо-1-фосфат. Одновременно под влиянием изомеразы происходит изомеризация глюкозо-6-фосфата во фруктозо-6-фосфат. Этот последний получает за счет аденозинтрифосфата в результате перефосфорилирования вторую молекулу фосфорной кислоты, которая становится при первом углероде. Таким образом возникает фруктозе-1,6-дифосфат (гексозодифосфат). Все это мол ет быть формулировано в тех же выражениях, как и в случае уже рассмотренного гликолиза, только исходным веществом будет глюкоза (иногда крахмал). [c.385]

    Деполяризация мембран цистерн приводит к высвобождению кальция и началу мышечного сокращения. Кальций связывается с субъединицей С тропонина. Это изменяет конформацию всей молекулы тропонина — субъединица I перестает мешать взаимодействию актина с миозином изменение конформации субъединицы Т передается на тропомиозин. Далее тропомиозин поворачивается на 20° и открывает закрытые ранее центры в актине для связывания с миозином. Головка миозина, которая в покое представляет собой комплекс М+АДФ+Рн, присоединяется к актину перпендикулярно, причем актин обладает к этому комплексу большим сродством (образование поперечных мостиков). Присоединение актина вызывает быстрое освобождение АДФ и Рн из миозина. Это приводит к изменению конформации, и головка миозина поворачивается на 45° (рабочий ход). Поворот головки, связанной с актином, вызывает перемещение тонкой нити относительно миозина. К головке миозина вместо ушедших АДФ и Рн вновь присоединяется АТФ, образуя комплекс М + АТФ. Актин обладает к нему малым сродством, что вызывает отсоединение головки миозина (разрыв поперечных мостиков). Она вновь становится перпендикулярно тонкой нити. В головке миозина, не связанной с актином, происходит гидролиз АТФ. Вновь образуется комплекс АДФ + Рн -Ь миозин, и все повторяется. После прекращения действия двигательного импульса Са " " с помощью Са2+-зависимой АТФазы переходит в саркоплазматический ретикулум. Уход кальция из комплекса тропонина приводит к смещению тропомиозина и закрытию активных центров актина, делая его неспособным взаимодействовать с миозином, - мышца расслабляется. [c.460]

    В произвольных движениях человека развитие мышечного усилия происходит вместе с изменением скорости сокращения, и общий результат суммирования этих свойств выражается уровнем развиваемой мощности, величина которой в скелетных мышцах зависит от АТФ-азной активности миозина, существенно различающейся в мышечных волокнах разного типа. В быстросокращающихся волокнах она более высокая по сравнению с медленносокращающимися волокнами. [c.371]

    При полном окислении одной грамм-молекулы глюкозы выделяется 686 ООО кал. Если глюкоза претерпевает ряд превращений по схеме Эмбдена — Мейергофа или в цикле Кребса, то при этом освобождается энергия, которая накаиливается в макроэргических связях АТФ. Образование макроэргических связей происходит в процессе фосфорилирова-ния, сопряженного с окислением, а также путем прямого переноса богатого энергией фосфата от субстрата к АДФ. Весь процесс приводит к образованию 38 макроэргиче-ских связей. Вклад каждой связи составляет приблизительно 7600 кал, а 38 связей — 288 800 кал. Следовательно, эта серия реакций приводит к накоплению в виде макроэргических связей в АТФ около 42% энергии и эта часть энергии может быть исиользовапа в процессе мышечного сокращения. [c.368]


Смотреть страницы где упоминается термин При мышечном сокращении происходит: [c.82]    [c.148]    [c.247]    [c.654]    [c.171]    [c.254]    [c.183]    [c.191]    [c.307]    [c.459]    [c.204]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

При мышечном сокращении происходит скольжение толстых и тонких нитей относительно друг друга



© 2025 chem21.info Реклама на сайте