Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний биологических жидкостях

    Для изучения химического состава, строения и свойств белков их обычно вьщеляют или из тканей, или из культивируемых клеток, или биологических жидкостей, например сыворотки крови, молока, мышц, печени, кожи и др. Элементный состав белков в пересчете на сухое вещество представлен 50—54% углерода, 21—23% кислорода, 6,5—7,3% водорода, 15—17% азота и до 0,5% серы. В составе некоторых белков присутствуют в небольших количествах фосфор, железо, марганец, магний, йод и др. [c.23]


    Хорошо известны способы концентрирования следовых количеств свинца, меди и железа из вин натрия, калия, кальция, магния, железа, алюминия, цинка, золота и других элементов из природных вод ионов кальция, магния и марганца из морской воды ионов кальция из мочи и других биологических жидкостей ионов стронция, кальция и меди из [c.486]

    Соли натрия и калия. Соли натрия и калия содержатся во всех тканях, причем соли натрия главным образом во внеклеточных жидкостях—в плазме крови, лимфе, пищеварительных соках и т. д., а соли калия — в содержимом клеток. Соли натрия способствуют удержанию воды в тканях, а соли калия и кальция — удалению воды из тканей. Соли натрия влияют на рост организма. Соли калия угнетают сердечное сокращение. Нерастворимые соли кальция и магния (фосфорнокислые, углекислые и фтористые) входят в состав костей, а растворимые соли (хлористоводородные) — в состав плазмы крови и всех биологических жидкостей. Соли кальция играют боль- [c.240]

    Кальций И магний входят также, помимо костной ткани, в небольшом количестве в ионизированном состоянии в состав других тканей, клеток, плазмы крови и всех биологических жидкостей. Часть катионов, особенно кальция и магния, присутствует в организме и в неионизированной, связанной с белками форме. Эта часть солей осмотически неактивна. [c.390]

    Разработаны методы определения магния в золах растений [15, 214], в почвах [16], в биологических жидкостях [18, 19, 20, 152, 244] шлаках и цементах [82], в сплавах на основе алюминия [6, 36, 127, 198], в железе [149], в металлическом уране [245], в никеле и сплавах на его основе [156], в рудах [175], в железных рудах, жаропрочных соединениях, цементах, чугуне, сахарах [175], в препаратах редкоземельных элементов [ 200] в чугуне [247] методы определения кальция в растительных материалах [86], в почвах [16], в биологических жидкостях [20, 79, 157, 175, 215], в рудах, сахарах [175] методы определения стронция [11, 175, 184, 242]. [c.124]

    Определение магния в биологических жидкостях [18, 19] [c.134]

    Прямое детектирование использовали [32] для определения магния и кальция в биологических жидкостях. Катионы элюировали смесью 2 мМ этилендиамин / 4 мМ винная кислота. Выходящий из колонки элюат смешивали с потоком раствора реагента [c.162]


    Аналогичный поточный метод анализа может быть использован для определения некоторых элементов (например, кальция, магния, щелочных металлов) в жидкостях биологического происхождения в случаях, когда подготовку пробы можно свести к простейшим операциям (разбавление, добавление реактивов и т. п.). Примеры применения метода ААА в медицине и биологии приведены, например, в [11]. Можно было бы без труда привести также примеры применения аналогичной техники анализа в самых разнообразных отраслях науки и промышленности. [c.207]

    В качественном анализе часто пользуются образованием осадка хлороплатината калия K2[Pt l6] [58, 228, 518, 1412, 1849, 1928] Осадителем служит 5--10%-ный раствор H2[Pt ls] Реагент позволяет обнаруживать I мг К в 5 мл раствора [58, 1912, 1936, 2684, 2872] и еще мепьшие количества калия [228] Вследствие дороговизны реагента испытание на калий производят на предметном стекле, наблюдая под микроскопом характерные довольно крупные желтые октаэдры [26, 56, 60, 75, 250, 328, 346, 437, 558, 580, 593, 699, 724, 954, 1189, 1356, 1407, 1768, 1856, 1901, 1912, 2223, 2666, 2684, 2775, 2872] В капле раствора удается заметить 0,01—0,5 мкг К [56, 250, 346, 724] Добавление этанола повышает чувствительность реакции [228, 2 0, 346, 580] Такие же осадки дают ионы аммония, рубидия, цезия, одновалентного таллия Осаждение хлороплатината применяется для обнаружения калия в гистологических срезах [1620, 2048], биологических жидкостях [751], золе растений [2048], алюминии и магнии [364] [c.13]

    Применение пламенно-эмиссионной спектрометрии. Пламенно-эмиссионная спектрометрия широко используется для определения концентраций натрия, калия, кальция и магния в клинических пробах. Удобство, правильность, чувствительность и скорость этого метода делают его пригодным для серийных анализов. Для проведения анализа, если в пробе присутствует значительное количество белка, ее сначала надо обработать азотной или хлорной кислотой (например, сыворотку крови). Затем добавляют освобождающий агент (лантан) и подавитель ионизации (литий), а раствор разбавляют до нужного объема высокочистой деионизованной водой. Многие биологические жидкости содержат значительное количество фосфатов, поэтому необходимо использовать освобождающие агенты. И, наконец, приготовленные растворы пробы анализируют с помощью пламепио-эмиссионного спектрометра, например пламенного фотометра, имеющего отдельные каналы (детекторы) или сменные светофильтры для каждого определяемого элемента. [c.693]

    Для повышения точности анализа Бэкер и Гартон [21] разработали двухлучевой прибор. Даусон и Хитон [22] собрали прибор для определения магния в биологических жидкостях. Они использовали монохроматор OPTI A F4, распылитель такого же типа, как у австралийских исследователей, распылительную камеру [c.19]

    Применение. Применения комплексонометрического титрования магния многочисленны определение жесткости природных вод, анализ сельскохозяйственных продуктов, алюминия и его сплавов, животных тканей, биологических жидкостей, морской воды, цементов, известняков и доломитов, удобрений, пищевых продуктов, стекол, черных металлов, kohih, фармацевтических продуктов, молока, минеральных вод, никелировочных ванн, бумажной массы, растений, горных пород, почвы и т. д. [c.866]

    Мешающие катионы предварительно удаляли с помощью ионного обмена [13]. Хессе и Бокель [14] определяли фосфор в нуклеиновых кислотах. Образец сжигали, растворяли золу и пропускали раствор через колонку катионообменника фосфор в нейтрализованном фильтрате определяли с помощью стандартного раствора церия(1У). Удаление мешающих катионов необходимо как для качественных, так и для количественных методов. Вуд [151 пропускал биологические жидкости через колонку со смолой цеокарб-225 в аммониевой форме, чтобы удалить из них кальций и магний перед определением фосфорных соединений методом бумажной хроматографии. [c.94]

    Таким образом, определенная часть двузарядных ионов находится в биологических жидкостях в связанном состоянии и лишена биологической активности. В связи с этим различают три формы существования ионов Са + и lAg + связанную с белком (40— 50%) образующую хелатные комплексы (10—15%) и ионизированную, или биологически активную (40— 50%). Последние две формы объединяют под названием диффузионноспособного кальция или магния вследствие способности их диффундировать через полупроницаемые мембраны. [c.176]

    Магний и кальций являются основными или побочными составными частями многочисленных природных или искусственных продуктов. Классические методы анализа этих двух катионов требуют больших затрат времени, тогда как комплексонометрическое титрование предоставляет исследователю возможность изящного определения обоих металлов, что сильно способствовало быстрому внедрению этого метода в аналитичёскую практику. Нам кажется целесообразным обсуждать одновременно оба металла, так как почти всегда они присутствуют вместе, и поэтому важно знать поведение смеси Са и Мд, даже если требуется определить лишь один из этих элементов. Анализ биологических жидкостей, благодаря его большому практическому значению, рассматривается в отдельном разделе. Приведенные литературные ссылки представляют собой лишь часть всех относящихся к данной теме публикаций, что кажется нам совершенно справедливым, так как большинство работ, с точки зрения собственно комплексонометрического титрования, не содержит ничего нового. Цитируемые работы все же дают полное представление о существующих возможностях метода и об еще не разрешенных проблемах. [c.159]


    Кальций и магний в биологических жидкостях. Комплексонометрическое определение Са и (или) Mg в крови, сыворотке, моче и спинномозговой жидкости в настоящее время является стандартным титриметрическим методом, применяемым почти во всех лабораториях. Число публикаций, относящихся к этой области, пре- [c.168]

    В течение ряда лет эмиссионные пламеннофотометрические методы применяли для определения натрия, калия и кальция в биологических пробах. Все эти элементы присутствуют в биологических жидкостях в сравнительно больших концентрациях, особенно натрий и калий, содержание которых достигает 0,4% в зависимости от типа гкидкости. Концентрация кальция обычно составляет 0,01—0,02%. Благодаря высокой чувствительности эмис-сиоиного метода им можно определять большие концентрации этих элементов в крайне неболыпих пробах. Магний также определяется в обычных анализах. На использование экстракции для определения меди в моче, крови и плазме указывается в работе [54] существуют также методы определения железа, стронция [2, 3] и таллия в моче [55]. [c.198]

    В биологических жидкостях и тканях организма магний находится как в виде акваиона, так и в связанном с белками состоянии в количестве < 10 %, т. е. по сущности это микро- [c.251]

    Магний. В организме взрослого человека содержится около 19 г магния (59 % в костной ткани, дентите и эмали зубов). Ежесуточное потребление магния 0,7 г. Содержание магния в некоторых продуктах питания приведено в табл. 4.4. Ион М +, так же как и К+, является внутриклеточным катионом. В биологических жидкостях и тканях организма магний находится как в виде гидратированного иона, так и в связанном с белками состоянии. Вследствие меньшего, чем у иона Са , ионного радиуса и большей энергии ионизации ион магния в сравнении с ионом Са + образует более прочные связи с органическими лигандами и поэтому является более распространенным активатором ферментов. Магний стабилизирует ДНК, катализирует транскрипцию РНК, участвует в образовании активных форм АТФ и АМФ в виде комплексов MgATф2 , М АМФ , которые выполняют роль донора фосфатной группы во многих ферментативных реакциях. В отличие от большего по размеру иона кальция (координационные числа 6,7,8) ион магния образует шестикоординационные соединения регулярной структуры, которые играют огромную роль в жизнедеятельности растительных и животных организмов. Так, ион магния является ком-плексообразователем в пигменте зеленых растений — хлорофилле, строение и биохимические функции которого рассмотрены в главах 5 и 13. [c.184]

    Физиологические растворы. Физиологическими называются растворы, которые по составу растворенных веществ способны поддерживать жизнедеятельность клеток, переживающих органов и тканей, не вызывая существенных сдвигов физиологического равновесия в биологических системах. По своим физико-химическим свойствам физиологические растворы и примыкающие к ним кровезамещающие жидкости весьма близки к плазме человеческой крови. Физиологические растворы обязательно должны быть изотоничными, содержать хлориды калия, натрия, кальция и магния в соотношениях и количествах, характерных для кровяной сыворотки. Очень важна их способность сохранять постоянство концентрации водородных йонов на уровне, близком к pH крови ( 7,4), что достигается введением в их состав буферов. [c.307]

    Раньше пестицидами служили главным образом неорганические вещества. В настоящее время находят широкое применение более эффективные и менее вредные для человека и сельскохозяйственных животных органические препараты и препараты биологического происхождения (бактериальные, антибиотики и др.). Однако и неорганические яды не утратили своего значения и используются в значительных количествах. Наиболее распространенными неорганическими пестицидами являются соединения фтора — фторсиликаты натрия, калия, аммония, цинка, магния, фторид натрия соли бария, например хлорид и карбонат бария соединения меди — медный купорос и основные сульфаты меди, бордосская жидкость, хлороксид меди цианамид кальция хлораты магния и кальция хлорная известь, железный купорос, сера, полисульфид кальция, тиосульфат итиоцианат (роданид) натрия, сода, известь,фосфиды цинка и алюминия, хроматы натрия, калия, цинка и другие. [c.18]

    Помимо этого, соединения натрия и калия (хлориды, фосфаты, гидрокарбонаты, сложные органические вещества) являются непременной составной частью тканей и физиологических жидкостей животных. 0,9%-ный раствор Na l (физиологический раствор) используют при кровопотерях и биологических исследованиях. Гидрокарбонат натрия и окись магния служат для нейтрализации избыточной кислотности желудочного сока. Бромиды калия и натрия употребляют в качестве средств, успокаивающих нервную систему. [c.69]


Библиография для Магний биологических жидкостях: [c.167]   
Смотреть страницы где упоминается термин Магний биологических жидкостях: [c.233]    [c.186]    [c.74]    [c.267]    [c.168]    [c.194]    [c.444]    [c.252]   
Физические методы анализа следов элементов (1967) -- [ c.198 ]




ПОИСК







© 2025 chem21.info Реклама на сайте