Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлоорганические соединения бария и кальция

    По металлоорганическим соединениям бериллия, кальция, стронция и бария литература использована исчерпывающе. [c.7]

    Рассматривая совместно результаты этого эксперимента и данные группового состава исследуемых нефтей, можно заметить, что степень взаимодействия нефтей с твердой поверхностью зависит, во-первых, от содержания в нефти смол, асфальтенов и окисленных структур, во-вторых, от элементного состава подложки. Причем, чем больше в нефти окисленных структур и больше на твердой поверхности многовалентных металлов -кальция, магния, железа, тем лучше взаимодействие исследуемой нефти с твердой поверхностью.Сказанное выше хорошо согласуется с исследованиями по адсорбции поликислот и других полиэлектролитов на поверхности аэросила [81,107]. Показано, что присутствие в системе полиэлектролит - аэросил многовалентных металлов, таких как барий, кальций, алюминий, железо, приводит к существенному росту адсорбции поликислот на твердой поверхности. Этот факт увеличения адсорбции полимолекулярных соединений авторы связывают с перезарядкой поверхности и образованием на поверхности металлоорганических комплексов типа Ме(С00)2 и Me( OO)j посредством образования так называемых мостиковых связей -СОО - Me - Si =. [c.93]


    Для стабилизации смазочных материалов и полимеров нашли применение различные металлоорганические соединения, прежде всего диалкилдитиофосфаты и диалкилдитиокарбаматы цинка, бария, кальция и некоторых других металлов. Ингибиторы такого типа уступают по эффективности фенолам и ароматическим аминам при умеренных температурах (80-130 °С), но превосходят их при более высоких температурах. Механизм действия этих ингибиторов сложен. Можно только отметить, что основным реакционным центром в их молекулах являются группы  [c.262]

    Металлоорганические соединения кальция, стронция и бария менее изучены. По своим свойствам они сходны с соответствующими соединениями лития. [c.76]

    Особенности огневого обезвреживания сточных вод, содержащих органические соединения металлов. Во многих производственных сточных водах содержатся органические соединения, в состав которых входят металлы (металлоорганические соединения, соли органических кислот, производные карбоновых кислот, спиртов и других органических соединений). Чаще всего встречаются органические соединения, содержащие щелочные металлы — натрий и калий, реже щелочно-земельные — кальций и барий. В сточных водах почти всегда присутствуют натриевые соли органических кислот. [c.91]

    Настоящая монография посвящена металлоорганическим соединениям элементов второй группы периодической системы — магния, бериллия, кальция, стронция и бария. [c.5]

    Подобно натрий- и литийорганическим соединениям и в отличие от магний- и алюминийорганических соединений, кальций, барий и стронций присоединяются к фенилированным олефинам в жидком аммиаке с образованием металлоорганических соединений, присутствие которых доказано выделением продуктов гидролиза. [c.493]

    В литературе отсутствуют указания на то, что щелочноземельные элементы — кальций, барий, стронций и радий — способны к образованию электрофильных реагентов. Отчасти это объясняется высокой энергией кристаллических решеток их солей, высокой энергией сольватации ионов, образующихся при разрушении решетки, и непрочностью предполагаемой связи с углеродом. Вызывает некоторое удивление, что ни бериллий, ни магний, легко образующие металлоорганические соединения, ни разу не обнаружили способности вступать в подобные реакции. Не появилось также ни одного сообщения о присоединении к олефинам солей цинка и кадмия по механизму, включающему электрофильную атаку металлом. Существование в водной среде таких ионов, как Сс1 (ОСОСНз) + [30], и сходство с химическими свойствами соединений ртути и таллия тем не менее предполагают возможность обнаружения электрофильных реакций с участием элементов II группы, которые образуют достаточно прочную ковалентную связь с углеродом. [c.242]


    Металлоорганические соединения кальция, стронция и бария до сих пор [c.364]

    Некоторые простые металлоорганические соединения даже в гомогенной фазе действуют каталитически на полимеризацию этилена [2]. Однако далеко не все соединения, содержаш,ие связь металл — углерод и имеюш,ие некоторый процент ионной связи, обладают таким каталитическим действием. Так, алкилы щелочных металлов от натрия до цезия, имеющие типичный ионный характер, сами по себе не являются катализаторами полимеризации а-олефинов и оказываются активными только при полимеризации диеновых углеводородов. Металлоорганические соединения щелочноземельных металлов от кальция до бария также не проявляют каталитической активности при полимеризации этилена. В то же время алюминийалкилы (ионный характер связи 22%) и литийалкилы (43%) полимеризуют этилен до низкомолекулярных полимеров, а с другими а-олефинами дают димеры. [c.50]

    В то время как магнийорганические соединения со времени открытия Гриньяра (1900) приобрели исключительно важное значение в препаративной органической химии, остальные элементы подгруппы магния, отчасти вследствие меньшей доступности самих металлов, не привлекали к себе внимания исследователей, и лишь в последние годы начинает складываться химия металлоорганических соединений бериллия, кальция, бария и стронция. [c.5]

    Из низкотемпературных реакций с удовлетворительными выходами осуществляется полимеризация бутадиена, изопрена и других углеводородов с сопряженными С=С-связями на металлоорганических соединениях магния, в частности на комплексе ( 4He)aMg—( UHe) Mgl и метакрилата на амидах кальция, стронция и бария [24—26, 150]. Более характерны реакции полимеризации кислородсодержащих соединений, в частности, окиси этилена, формальдегида. [c.76]

    Из этих вопросов последний является наиболее сложным и подробно изучен во многих работах [195]. Прямое использование водных растворов сравнения не обеспечивает одинакового абсорбционного сигнала с растворами органического происхождения, хотя иногда, например при определении железа, ванадия, никеля и меди в продуктах крекинга, и предлагают методики на их основе [196, 197]. В [198] описана методика атомно-абсорбционного определения бария, кальция, меди, железа и цинка в моторных смазочных маслах путем использования метода добавок, в котором известные количества определяемых элементов вводят в исходную пробу в виде водных растворов неорганических солей. В качестве растворов сравнения чаще применяют металлоорганические соединения, растворенные в том же растворителе, который используется для разбавления анализируемых образцов [199—201], а также металлоорганические соединения, растворенные в масле, нефти, очищенные от металлов [202—204]. Выпускаются стандартные совместные растворы Коностан , Континентал Ойл Компани (США), на основе которых выпускаются также и смешанные стандарты (Д-12, Д-20, С-20) на несколько элементов в одном растворе [205, 206]. [c.57]

    Реакции бензонитрила с фенилэтинилметаллическими соединениями [17]. К суспензии 0,02 моля (СвНвС = С)гМ (гдеМ=Ва, Са, 5г, Мд) в 40 жл эфира добавлено 3,09 г (0,03 моля) бензонитрила в 10 мл эфира.Через определенные интервалы времени бралась проба на цветную реакцию с кетоном Михлера (проба Гилмана ). Отрицательная реакция указывала на исчезновение металлоорганического соединения. Время, необходимое для получения отрицательной реакции, составило (в часах) для бария 3,2 2,8 2,5, для стронция 4,8 и 5, для кальция 10,5 и 11,3, для магния 14,5 и 15,0. [c.502]

    В неполярных несольватирующих средах, подобных толуолу, полимер типа II (В) образуется при температурах от —90 до +100° а) на тонко измельченных литии, кальции, стронции или барии, б) с металлоорганическими соединениями этих металлов, иапример с 9-флюорениллитием, в) с солями, образованными этими металлами и кислотами Льюиса, имеющими порядка 15—40, и г) на суспензиях гриньяровских реактивов, из которых удален растворитель (эфир или амин), использовавшийся для их приготовления. Концентрация катализатора обычно составляет 0,1—10% от веса мономера. [c.267]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]



Смотреть страницы где упоминается термин Металлоорганические соединения бария и кальция: [c.610]    [c.279]    [c.201]    [c.103]    [c.268]   
Начала органической химии Книга 2 (1970) -- [ c.400 ]




ПОИСК





Смотрите так же термины и статьи:

Барий соединения

Кальций соединения

Металлоорганические соединения

Металлоорганические соединения бария

Металлоорганические соединения кальция



© 2025 chem21.info Реклама на сайте