Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды сравнения для водных растворов

    Наиболее часто при электрохимических измерениях в водных растворах применяют водородный, каломельные, галогенсеребряные и оксидно-ртутный электроды сравнения. Потенциалы электродов сравнения по отношению к нормальному водородному электроду представлены в табл. 1.2. В некоторых случаях создают специальные электроды сравнения, обратимые по отношению к аниону или к катиону. [c.20]


    Явление адсорбции на границе раздела фаз тесно связано со вторым явлением — пространственным разделением зарядов и обусловленным этим изменением гальвани-потенциала. Рассмотрим связь этих явлений на примере ртутного электрода в водном растворе NaF. При помощи вспомогательного электрода и внешнего источника тока (рис. 49) можно в широких пределах изменять разность потенциалов 1 на концах цепи, а следовательно, и гальвани-потенциал Др ф на границе раствор — ртуть. Однако при этом происходит одновременное изменение гальвани-потенциала вспомогательного электрода Др ф, а также возникновение омического падения потенциала в объеме раствора, так что 6 i= i=6 (Д ф). Чтобы измерить изменение гальвани-потенциала исследуемого электрода (в данном примере ртутного), в систему вводят третий электрод — электрод сравнения и измеряют разность потенциалов между этим электродом и исследуемым электродом компенсационным методом или при помощи высокоомного вольтметра. При этом ток в цепи электрода сравнения практически равен нулю (за этим следят при помощи чувствительного гальванометра А- ). Следовательно, разность потенциалов Е не содержит омического падения напряжения и складывается из трех гальвани-потенциалов на границах электрод сравнения — раствор, раствор — ртуть и ртуть — металл электрода сравнения. При изменении положения делителя напряжения на внешнем источнике тока из этих трех гальвани-потенциа-лов изменяется только Др ф, а потому (Др ф)- Таким образом, [c.145]

    Стандартизация pH в неводных растворах может быть выполнена так же, как и в водных растворах, т. е. путем изготовления стандартных растворов в том же растворителе, что и исследуемый раствор. Однако в этом случае возникает ряд затруднений. Например, коэффициенты активности сильных кислот значительно больше отличаются от единицы, чем в водных растворах сильные в воде кислоты становятся в неводных растворах слабыми хуже растворимы соли значительно меньше имеется данных о коэффициентах активности. В настояш ее время единственным веш еством, с помощью которого может быть произведена стандартизация pH в неводных растворах, является хлористый водород, так как для него имеются данные о коэффициентах активности в большинстве широко используемых растворителей и в их смесях с водой. В качестве электрода сравнения при измерениях в неводных растворах может быть использован хлорсеребряный электрод в растворе НС1, который вполне пригоден для измерений в ряде чистых неводных растворителей и их смесях с водой. [c.409]


    Поскольку удельная емкость сильно зависит от природы металла, этот метод главным образом используется для сравнений. Было показано, что электрод ведет себя как параллельно включенные емкость и сопротивление. Измерения проводятся при резком увеличении плотности тока, протекающего через электрод в водном растворе. Наклон кривой переходного напряжения как функции времени регистрируется на высокоскоростном самописце или выводится на осциллоскоп. [c.387]

    В связи с тем что применение каломельного электрода в водных растворах в качестве электрода сравнения имеет давнюю традицию, а также вследствие относительной легкости его приготовления были приложены серьезные усилия, чтобы выяснить, насколько электроды, основанные на галогенидах ртути, могут быть использованы в апротонных растворителях. За редким исключением, результаты исследований были отрицательными. [c.261]

    Ряд напряжений и напряжение разложения в расплавах. При электролизе смеси солей, содержащей два или более катионов, на катоде в первую очередь, как и в случае водных растворов, разряжается катион, обладающий менее отрицательным потенциалом. Однако величины отдельных электродных потенциалов в расплавах нам неизвестны. Экспериментальное определение их невозможно, так как не удается создать универсальный стандартный электрод сравнения, каким является, например, водородный или каломельный электрод для водных растворов. [c.591]

    Два водных раствора, и и г, и органический раствор о. 8 образуют ячейку с жидкой мембраной с двойным распределением [381]. Для серии измерений, проведенных с электродом фиксированного состава и раствором У1 различной концентрации, потенциал электрохимической цепи между раствором и электродом сравнения в растворе 2 (постоянного состава и концентрации) зависит от активности иона А в растворе Wl в соответствии с уравнением Нернста [c.143]

    Электроды сравнения для определения относительных электродных потенциалов выбирают в зависимости от состава расплавленного электролита. Универсальный электрод сравнения, подобный водородному электроду в водных растворах электролитов, в расплавах электролитов отсутствует. В расплавах хлоридов обычно в качестве электрода сравнения используют хлорный электрод в виде тонкого графитового стержня, насыщенного хлором (рис. 27), помещаемого в расплав соли в паре с другим электродом, потенциал которого хотят измерить. [c.83]

    Вместо водородного можно применять стеклянный электрод с водородной функцией, вместо каломельного — другой электрод сравнения. Концентрированный раствор хлорида калия (обычно 3,5 М или насыщенный) применяют в цепях (3.11) и (3.12) с целью уменьшения диффузионного потенциала на границе со стандартным или исследуемым раствором предполагается, что перенос тока на жидкостной границе осуществляется в основном ионами К+ и С1 , подвижности которых в водных растворах близки. [c.53]

    Электропроводность растворов и расплавов. Измерение электропроводности проводят методом компенсации, т. е. сравнением неизвестного сопротивления с известным, используя различные схемы электрических цепей. Пробу водного раствора электролита помещают в кювету с электродами и измеряют сопротивление рас-. твора Ях (Ом) [c.174]

    ИОНЫ которого не выжимаются из раствора и не проявляют специфического взаимодействия с металлом электрода. Примером может служить ртутный электрод при =0 в водном растворе NaF. Такие системы удобны в качестве систем сравнения для качественной и количественной характеристик адсорбционных явлений. [c.166]

    Для решения ряда практически важных вопросов возникает необходимость сопоставления кислотности растворов в различных растворителях, приведение значений рНр к единому началу отсчета. Можно было бы полагать, что измерения, произведенные на рН-метре, откалиброванном по водным стандартам, должны давать значения pH по отношению к единому стандарту, так как электрод сравнения остается неизменным и измеряемая э. д. с. представляет собой разность потенциалов электродов, обратимых по отношению к ионам водорода, опущенных в стандартный водный и исследуемый неводный растворы. Однако, как уже говорилось, наличие фазового потенциала не позволяет находить значения р Нр, отнесенные к единому водному стандарту. [c.410]

    ЭЛЕКТРОДЫ СРАВНЕНИЯ ДЛЯ ВОДНЫХ РАСТВОРОВ [72] Водородный электрод [c.147]

    Непосредственно измерить величину потенциала отдельного электрода не представляется возможным. Поэтому электродные потенциалы измеряют путем сопоставления с потенциалом принятого для сравнения электрода. Таким электродом сравнения является водородный электрод. Он состоит из платиновой пластинки, покрытой платиновой чернью, т. е. электролитически осажденной платиной. Электрод погружен в водный раствор серной кислоты с активностью ионов ан+=1 и омывается струей газообразного водорода под давлением 1 атм. Величину потенциала такого электрода условно принимают за нуль (при всех значениях температур). [c.328]


    Для металлов, растворяющихся в электролите, представляющем собой расплав солн или жидкий раствор расплавленных солей, берут другой электрод сравнения для определения стандартных потенциалов, а именно, натриевый электрод или оловянно-натриевый, который способен работать при высоких температурах. Характерно, что несмотря на различные потенциалы растворения в водных растворах или в расплавленных галидах, распределение металлов в ряду напряжений сохраняется. Некоторые данные по потенциалам растворения в водных электролитах и в расплаве хлоридов приведены в табл. 9.2. [c.234]

    Исследование влияния приложенной разности потенциалов на поверхностное натяжение границы раздела фаз удобнее всего проводить на идеально поляризующейся поверхности жидкого металла (обычно ртути) в водном растворе электролита. Очень важно, что при этом одновременно измеряются разность потенциалов фаз (по сравнению с каким-либо стандартным электродом) и поверхностное натяжение межфазной а поверхности (обычно по максимальной высоте столба ртути, удерживаемой силой поверхностного натяжения в капилляре) вместе с тем возможно определе- ние и плотности заряда двойного слоя по току, переносимому вытекающей по каплям ртутью, при известной их по-верхности. [c.215]

    Весьма распространены газовые электроды сравнения — водородный, хлорный, кислородный. В таких электродах газ пропускают через электролит. Электрический контакт с внешней цепью осуществляется с помощью инертного по отношению к газу проводника тока. В случае водородного и кислородного электродов применяется платина, а в случае хлорного — графит. В растворе электролита, через который пропускают газ, протекает окислительно-восстановительная реакция с диссоциацией газа на атомы и их ионизацией. Например, в хлорном электроде сравнения хлор, адсорбируясь иа графите, погруженном в расплав или водный раствор хлористой соли, диссоциирует С12 2С1, а ато- [c.190]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Рис 2 16 Кривая ток — потенщмл, соответствующая восстйнонлению Си (2,83 10 моль/л) на ртутном электроде d водном растворе НСЮ (0,1 моль/л) (электрод сравнения насыщенный каломельный электрод) [c.52]

    В разработанных элементах расплавленные металлы являются электродами, а расплавленные соли — электролитом. Агрусс приводит различные преимущества нового типа элементов по сравнению с прежними элементами, работающими с газовыми нли жидкостными диффузионными электродами и водным раствором электролита. Плотность тока обмена у металлических электродов в расплавленном электролите может быть очень больщой — порядка 200 а/сл , что позволяет получить высокие плотности тока при минимальной, почти не поддающейся измерениям активационной поляризации. Далее, число переноса катионов в электролите равно 1, поэтому в нем не может возникнуть концентрационная поляризация. Единственно заметные потери в таких элементах могут возникнуть из-за омического падения напряжения // , но они тоже будут гораздо меньще, так как проводимость расплавленных солей в 5 раз выще, чем проводимость обычных водных электролитов. [c.56]

    В обычном виде стекло не содержит водородных ионов. Однако при вымачивании стеклянного электрода в водных растворах, поверхностный слой его на некоторую глубину подвергается изменениям — в него проникают молекулы воды, происходят процессы гидратации и некоторого набухания. Часть ионов натрия в поверхностном слое вымывается и заменяется ионами водорода из раствора. Между водородны.ми ионами в поверхностном слое и в растворе устанавливается равновесие, в результате которого возникает равновесный межфазный потенциал. Основная особенность этого поверхностного слоя — исключительно высокая селективность к ионам водорода (по сравнению с ионами натрия или другими катионами). Для разных видов стекла коэффициент селективности других ионов составляет 0-з—В связи с этим обе стороны мембраны действуют как хорошие водородные электроды. В отличие от других видов г оиоселсктивкых. иембран, в средней части стеклянной [c.398]

    Часто используемый в водных растворах каломельный электрод сравнения в органических растворителях ранее практически не употреблялся, что связывали с его нестабильностью. Однако, недавно, были опубликованы работы по исследованию поведения каломельного электрода в ацетонитриле [187] и пропиленкарбонате [188, 189]. Для использования в последнем растворителе каломельный электрод готовился так же, как в водных растворах [145, 146], и в ячейку с электродом сравнения заливался раствор ( 2H5)4N 104 в про- [c.80]

    Для определения содержания меркаптановой серы навеску нефтепродукта титруют водным 0,005 н. раствором HgNOa. Конечную точку титрования находят по изменению в процессе титрования силы предельного диффузионного тока, проходящего через раствор при постоянном напряжении между индикаторным электродом и неполяризующимся электродом сравнения. [c.155]

    Танака и др. [433] сконструировали чувствительный к ионам алкил-бензолсульфонатов ион-селективный электрод на основе поливинилхлоридной матрицы, заполненной комплексом сульфонат — ферроин. Чтобы приготовить соль алкилбензолсульфоната, избыток. 10 М раствора ферроина приливали к водному раствору алкилбензолсульфоната натрия и перхлората натрия (оба 0,1 М). Осадок, который представляет собой смесь алкилбензолсульфоната ферроина и перхлората ферроина, промывали, высущива.ли, после чего 0,2 г этого осадка вместе с 0,4 г поливинилхлорида растворяли в 5 мл тетрагидрофурана. К этой смеси добавляли пластификатор диоктилфталат (0,2 мл), после чего раствор перемешивали. Далее растворитель выпаривали и из полученного материала вырезали мембраны диаметром 11 мм и толщиной 0,3 мм, которые закрепляли на тефлоновой трубке. Внутренним раствором сравнения служил 10 М раствор алкилбензолсульфоната, электродом сравнения хлорсеребряный электрод. Электродная функция вышеописанного твердого мембранного электрода в водных растворах или 0.1 М ацетатном буфере (pH 4,8) линейна в диапазоне концентраций [c.149]

    Исследования проводились в водных растворах сульфатов и хлоридов соответствующих металлов при температурах 25— 250° С в автоклаве, устройство которого показано на рис. 56. Автоклав был изготовлен из нержавеющей стали и рассчитан на давления порядка 100 атм. Необходимое давление создавалось либо за счет паров растворителя, либо за счет инертного газа (азота высокой чистоты). Для уплотнения крышки автоклава и токовво-дов использовался фторопласт-4. В крышке автоклава имелось специальное приспособление для погружения изучаемого электрода (вместе с электродом сравнения) в раствор и подъема его после проведения измерений. В качестве электрода сравнения при измерении потенциалов исследуемых металлов использовался стандартный ртутно-сульфатный электрод [8] [c.91]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Выполнение работы. Анализируемый водный раствор доводят до метки дистиллированной водой в мерной колбе вместимостью 100 мл. Переносят пипеткой 10 мл раствора в стакан, добавляют 10 мл аммиачного буферного раствора, погружают ионселективный электрод и электрод сравнения и титруют раствором ЭДТА, регистрируя изменения потенциала индикаторного электрода. [c.135]

    Ошибка, вносимая поляризацией в результаты измерения при использовании обычного стального электрода, может достигать нескольких десятых вольта. Поэтому необходимо, чтобы потенциал электрода сравнения в течение измерений на любом участке подзем-, ного сооружения оставался постоянным. Таким свойством обладают стандартные электроды сравнения, например медно-сульфатные. Принцип действия неполяризующегося электрода заключается в том, что его контакт с грунтом (электролитом) осуществляется не только непосредственно, но и через раствор соли того металла, из которого изготовлен электрод. Медно-сульфатный электрод сравнения состоит из стержня красной меди, помещенного в водный насыщенный раствор медного купороса СиЗО , который отделяется от грунта пористой перегородкой. Раствор медного купороса просачивается через пористую перегородку и смачивает ее внешнюю поверхность, создавая надежный гальванический контакт между медным электродом и грунтом. Для данного электрода сравнения постоянный скачок потенциала, возникающий на границе медь - насыщенный раствор сульфата меди, сравнивается со скачком потенциала на границе защищаемого стального сооружения и окружающего грунта (электролита) с помощью приборов. Приборы подключаются к медно-сульфатному электроду (ЭН-1, НМСЭ-58, МЭП-АКХ, МЭСД-АКХ) проводами, присоединяемыми к медному стержню с помощью специальной клеммы. На рис. 4.12 [c.70]

    Амперометрическое титрование. - Хлорид-ион в водном растворе оттитровывается амперометрически стандартным раствором нитрата серебра, используя каломельный электрод в качестве электрода сравнения. Строится кривая зависимости диффузионного тока от количества добавленного раствора азотнокислого серебра конечная точка титрования определяется, как точка пересечения двух прямолинейных участков графика. [c.25]

    Для измерения активности ионов натрия и калия в водных растворах ( п Nq и рК от О до 3) применяют стеклянные электроды ЭСЛ-51-11 и ЭСЛ-96-11 соответственно, предварительно выдержанные в течение 8 часов в 0,1 М растворе Nq I или K l Электродом сравнения служит хлорид-серебряный электрод ЭЦЛ-1 М4. Настройку прибора проводят по специально приготовленным Контрольным растворам с известной величиной pNfl (рК), имеющим одинаковую температуру 20 +5°G. [c.166]

    При растворении хингидрона ась/асьн2 = 1. поэтому е = = Е°—0,059 pH. Следовательно, потенциал платинового электрода, погруженного в водный раствор хингидрона, так же зависит от pH, как потенциал водородного электрода. Значения потенциалов различаются только по абсолютной величине. До-стоинстзами хингидронного электрода по сравнению с водородным являются простота его изготовления, более быстрое установление значения потенциала и относительно высокое значение стандартного потенциала (е = +0,703 В). [c.315]

    Эти стандартные окислительные потенциалы отличаются друг от друга не слишком сильно, но из их сравнения следует, что Н2О должна окисляться с большей легкостью, чем С1 . Однако для осуществления реакции иногда требуется намного более высокое напряжение, чем то, которое указывают электродные потенциалы. Дополнительное напряжение, необходимое для проведения электролиза, называется перенапряжением. По-видимому, перенапряжение обусловлено слишком высокой скоростью реакций на электродах. Электроосаждению металлов соответствуют низкие значения перенапряжения, но перенапряжения, соответствующие выделению газообразного водорода или газообразного кислорода, обычно весьма значительны. В рассматриваемом примере перенапряжение, необходимое для образования Н2, настолько велико, что С1 окисляется легче, чем Н2О. По этой причине при электролизе водных растворов Na l (рассолов) образуются Н2 и I2, если только концентрация С1 не слишком низка при этом протекают следующие реакции  [c.223]

    Галогенсеребряные электроды сравнения очень удобны при работе в ячейках без жидкостного соединения они ггрименимы как в водных, так и во многих неводных средах. Они представляют собой серебряную проволоку, покрытую галогенидом серебра, который может быть нанесен как путем термического осаждения, так и электрохимически. Преимущество хлорсеребряного электрода по сравнению с каломельным состоит в том, что он устойчив при повышенных температурах. Хлорид серебра растворяется в концентрированных растворах хлорида калия, поэтому при приготовлении хлорсеребряного электрода необходимо насыщать раствор хлорида калия хлоридом серебра. [c.23]

    Выполнение работы. 1. Приготовить 0,1 и 0,01 т растворы НС1 в метаноле или этаноле. 2. Составить гальванический элемент из стеклянного электрода, помещенного в испытуемый неводный 0,01т раствор НС1, и любого электрода сравнения, в состав которого входит водный раствор соли. Соединить электроды через промежуточный сосуд с неводным раствором НС1 и электролитический мост, который заполнить раствором Nal в СНзОН или K NS в СгНбОН. Подключить гальванический элемент к рН-метру, измерить pH раствора, вычислить ан+ и выполнить п. 4 работы 47. [c.176]

    Для составления гальванического элемента можно использовать каломельный или хлор-серебряный электрод в качестве внешнего электрода сравнения. Например, для исследования водных растворов NH4NO3 собирают гальванический элемент по схеме  [c.177]

    Выполнение работы. 1. Приготовить неводный раствор кислоты или нескольких кислот. Использовать муравьиную, уксусную, бензойную, /г-оксибензойную, пикриновую, хлористоводородную, азотную, серную или другие кислоты. Растворителем кислоты может служить смесь этилового спирта и воды в соотношении 1 1 (по объему) спирто-бензольная смесь (1 9) диметилформамид ацетонитрил или пиридин. 2. Приготовить раствор титранта гидроокиси калия, гидроокиси натрия или четвертичного аммонийного основания, например ( 2Hs)4NOH в соответствующем растворителе. Концентрация титранта (установить ее по водному раствору НС1, приготовленному из фиксанала) должна быть примерно в 10 раз больше концентрации раствора кислоты. 3. Составить гальванический элемент из индикаторного стеклянного электрода с водородной функцией и насыщенного каломельного электрода сравнения (см. работу 47). 4. Выполнить титрование (см. стр. 177) и провести все рас- [c.180]

    В другом способе определения pH в неводной среде используют гу же основную ячейку, которую применяли для водных растворов, включая каломельный электрод сравнения с водным раствором КС1. Если для данного растворителя применены водные стандартные растворы, то может быть получен ряд величин, которые дадут оценку, чему-то , что можно лишь смутно связать с кислотностью. Если система представляет собой смешанный растворитель, содержащий воду, или водоподобный растворитель, то о системе можно узнать достаточно, чтобы связать полученные величины с величинами концентрации водородных ионов посредством калибровочной кривой. Однако вследствие того, что величина потенциала в месте контакта жидкостей меняется от растворителя к растворителю, очевидно, что нельзя сравнивать величины pH в одном растворителе с величинами pH в другом. Например, если рН-метр дал показание 5,0 для определенного раствора в смеси этанол — вода и то же самое показание для раствора в смеси метанол — вода, причем в обоих случях был применен один и тот же стандартный раствор, нельзя делать вывод, что в обоих растворах активность водородного иона одинакова. На самом деле между ними не будет никакого сходства, прежде всего потому, что на границе между растворителем этанол — вода и насыщенным водным раствором КС1 каломельного электрода и на границе между растворителем метанол—вода и водным раствором КС1 будут совсем разные потенциалы. [c.379]

    Для сравнения окислительно-восстановительной способности различных систем было введено представление о стандартном (нормальном) окислительно-восстановительном потенциале, а для случаев, когда в реакции участвует вещество металлического электрода, — представление о стандартном (нормальном) электродном потенциале. Потенциал называется стандартным (нормальньш) в том случае, когда активность (гл. V, 8) каждого из участников обратимой электродной реакции равна единице. Если окислитель или восстановитель в системе находится в газообразном состоянии (Оа, I2, На и др.), то а = при давлении газа 1 атм. В табл. 15 приведены оЧ носитель-ные значения некоторых стандартных окислительно-восстановительных потенциалов ф° в водных растворах при 25 С. [c.195]


Смотреть страницы где упоминается термин Электроды сравнения для водных растворов: [c.120]    [c.248]    [c.148]    [c.77]    [c.317]    [c.145]    [c.217]    [c.204]    [c.258]   
Смотреть главы в:

Справочник по электрохимии -> Электроды сравнения для водных растворов




ПОИСК





Смотрите так же термины и статьи:

Раствор сравнения

Электрод сравнения



© 2025 chem21.info Реклама на сайте