Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилентерефталат диэлектрические свойства

    Пленка из полиэтилентерефталата, выпускаемая в СССР под названием лавсан, с США — майлар, в Англии — терилен, обладает высокой механической прочностью и химической стойкостью в широком диапазоне температур и хорошими диэлектрическими свойствами. Она применяется в качестве изоляционного материала, основы фото- и кинопленки. [c.76]

Рис. 152. Влияние ориентации полимеров на их диэлектрические свойства — зависимость tg б полиамида от частоты и направления измерения (а) и зависимость для полиэтилентерефталата при частоте 100 Гц от Рис. 152. <a href="/info/1624692">Влияние ориентации полимеров</a> на их <a href="/info/62729">диэлектрические свойства</a> — зависимость tg б полиамида от частоты и направления измерения (а) и зависимость для полиэтилентерефталата при частоте 100 Гц от

    Пленки на основе полиэтилентерефталата могут быть получены толщиной до 10—15 1. Они сочетают высокую прочность с хорошими диэлектрическими свойствами в широком интервале температур. [c.52]

    Основными областями применения полиэтилентерефталата являются производства пленок и волокон. Пленки получают методом экструзии из расплава через щелевые головки. Для получения пленок с высокими прочностными показателями их ориентирует в двух взаимно перпендикулярных направлениях при помощи вытяжки и затем подвергают тепловой обработке — термофиксации. Полиэтилентерефталатные пленки сочетают высокую механическую прочность с хорошими диэлектрическими свойствами, которые сохраняются в широком интервале температур. Высокая прочность полиэтилентерефталата позволяет изготавливать очень тонкие пленки, например толщиной —10 мк. Пленки применяются в качестве электроизоляционного материала конденсаторы на ее основе могут работать при температурах от —60 до 150 °С. [c.276]

    Наибольший интерес в качестве пленочных диэлектриков представляют полиарилаты Д-4 и Ф-2. Неориентированные пленки из полиарилатов Д-4 и Ф-2, полученные методом полива из растворов, имеют предел прочности при растяжении 600— 1000 кГ/сж и относительное удлинение при разрыве 20—40%. По диэлектрическим свойствам пленки из полиарилатов близки к пленкам из полиэтилентерефталата и поликарбоната. В табл. 1 приведены электрические характеристики пленок из этих материалов. [c.144]

    Смесь феноло-формальдегидной смолы с конденсированным бутилатом титана используется для получения пленок из полиэтилентерефталата, сохраняющих в течение длительного периода диэлектрические свойства и применяющихся в качестве изоляторов [c.235]

    Пленки на основе полиэтилентерефталата применяются в основном в электротехнической промышленности и радиоэлектронике. Они обладают высокой механической прочностью, хорошими диэлектрическими свойствами в широком интервале температур. По прочности они превосходят целлофановые, ацетилцеллюлозные и полиэтиленовые пленки. [c.95]

    Ориентированные пленки из полиэтилентерефталата характеризуются высоким пределом прочности при растяжении и резко выраженной температурой размягчения. Такие пленки успешно перерабатываются методом формования листа, зажатого по контуру, или комбинированием вакуумформования и формования при помощи сжатого воздуха. Благодаря своим высоким диэлектрическим свойствам пленки из ориентированного полиэтилентерефталата нашли широкое применение в качестве прокладок в телевизионных трубках, диафрагм в микрофонах и т. д. [c.563]


    Гидролиз полиэтилентерефталата 20%-ным раствором едкого кали был описан Уотерсом [33], который нашел, что в отличие от гидролиза в нейтральной и кислой среде эта реакция протекает негомогенно по отношению к полимеру. Уотерс обнаружил, что полимер, взятый в виде волокон, взаимодействует с реагентом только с поверхности, что вызывает потери веса образца, так как образующиеся при гидролизе этиленгликоль и терефталевая кислота переходят в раствор. Объяснить этот результат можно, по-видимому, тем, что ионы гидроксила не могут проникнуть внутрь полимера в связи с его диэлектрическими свойствами, а также тем, что образование отрицательно заряженных карбоксилышх ионов на поверхности полимера может приводить к отталкиванию атакующих ионов грщроксила. [c.14]

    Пленки из полиэтилентерефталата обладают высокими прочностными свойствами, умеренной деформируемостью под действием механических нагрузок и хорошими диэлектрическими свойствами. Высокие прочностные свойства позволяют изготовлять более тонкие пленочные материалы по сравнению с таковыми из других полимеров, с достаточной прочностью и другими свойствами, необходимыми для их эксплуатации. В этом особое преимущество таких пленок. [c.512]

    Пленка из полиэтилентерефталата обладает высокой механической прочностью и химической стойкостью в широком диапазоне температур, а также хорошими диэлектрическими свойствами. Она применяется в качестве изоляционного материала, основы фото- и кинопленки. [c.302]

    Диэлектрические свойства полиэтилентерефталата изменяются в зависимости от степени его кристалличности и от влажности, как это видно из данных табл. 108 и рис. 148. Поглощение воды при набухании полиэтилентерефталата не меняет времени релаксации полярных групп, хотя есть все основания ожидать, что величина т гидроксильной группы, химически связанной с макромолекулами, будет отличаться от величины т для гидроксильных групп, попавших в полимер при на- бухании. [c.308]

    Полиэтилентерефталат — полярный диэлектрик, что отражается на его диэлектрических свойствах. С повышением температуры его диэлектрические свойства ухудшаются. Так, удельное объемное электрическое сопротивление лавсановой пленки при температуре 20 С х X 10 Ом-м, при повышении температуры до 155°СРу уменьшается до 1-10 Ом-м. Электрическая прочность лавсановой пленки при температуре 20 С находится в пределах 160—270 кВ/мм,при повышен ных температурах она также снижается, например при 155 С до 50— 1 0 кВ/мм. Механические параметры этой пленки приведены ниже  [c.53]

    Электрические свойства пентапласта (рис. 40) во многом напоминают свойства полиэтилентерефталата [155]. В пределах температур 20—120 С диэлектрическая постоянная меняется мало 3,0— 3,25 (при = 103 Гц). Выше 120°С начинается быстрый рост е и свидетельствующий о начале плавления кристаллитов. При 32 °С на кривых tgS— <ИЕ — I наблюдается переход, связанный с температурой стеклования. [c.55]

    Исследование диэлектрических свойств полиэтилентерефталата (ПЭТФ) показало, что его кристаллизация существенно сказывается как на характере дипольно-сегментальной релаксации, так и на электропроводности . По мере протекания кристаллизации увеличивается наивероятнейщее время релаксации и расширяется, релаксационный спектр, что приводит к размытию максимума tg б. Значение tg б в максимуме высококристаллического образца (рис. vn. 10, кривая 4) в семь раз меньше значения tg б аморфного образца ПЭТФ (рис, VII. 10, кривая 1). Кристаллизация спо- [c.249]

    Изучению электрических свойств полиэтилентерефталата посвящены работы Сажина, Подосеновой зэ з других исследователей исследовано влияние степени кристалличности полиэтилентерефталата на его электропроводность и показано, что повышение степени кристалличности полимера на 10—50% сопровождается уменьшением электропроводности в 10—1000 раз 39 . При изучении влияния кристалличности и температуры кристаллизации на диэлектрические свойства [c.244]

    Исследованию диэлектрических свойств полиарилатов предшествовали аналогичные исследования для полиэтилентерефталата и смешанных полиэфиров этиленгликоля, терефталевой и себациновой кислот, т. е. для полимеров, содержащих в цепи ароматические ядра 3.4. В результате этих исследований было установлено наличие двух типов релаксационных процессов, один из которых наблю- дается при температурах выше температуры стеклования и связан с дипольно-эластическими потерями, а другой — в стеклообразном состоянии и связан с дипольно-радикальными потерями. Так как переход от этих полиэфиров к полиарилатам позволяет значительно увеличить концентрацию ароматических ядер в полимерной [c.178]

    В данной работе исследовано влияние добавок полиэфирного волокна (ПЭФВ) из полиэтилентерефталата на свойства элементарных слоев электроизоляционного (трансформаторного) картона с целью приближения его диэлектрических характеристик, в частности диэлектрической проницаемости, к соответствующей характеристике трансформаторного масла, [c.126]

    RS- При изучении диэлектрических свойств полиэтилентерефталата Реддиш нашол два типа релаксационных потерь. Один из них (низкотемпературный) вызван наличием гидроксильных групп. Поэтому наблюдается возрастание тангенса угла потерь в области максимума при набухании полимера выводе. Во-вторых, этим автором было обнаружено поглощение в инфракрасном спектре, отвечающее гидроксильным группам. [c.311]


    Многие исследования посвящены изучению механических и электрических свойств полиэтилентерефталата вытяжке волокна [1134, 1136, 1140, 1141], вынужденной эластичности [1135], деформации [1137], влиянию скорости на кинетическое трение нальду [1138],модулюупругости при различных степенях растяжения [1139], релаксации напряжений [1203], связи напряжения деформации и двойного лучепреломления [1142], трибоэлектрическим свойствам [1143], электропроводности [1144], диэлектрической прочности, сопротивлению изоляции и другим [1145]. [c.40]

    Ценным свойством полиарилатов являются их высокие диэлектрические показатели, сохраняющиеся без изменения в широком интервале температур 2217. 24.4426 величине диэлектрической проницаемости (в = 3,2—3,5) пленки полиарилатов диана, фенолфталеина близки к полиэтилентерефталату. Преимуществом полиарилатных пленок по сравнению с полиэтилентерефталатом и поликарбонатом диана является незначительное изменение тангенса угла диэлектрических потерь (tg б) и удельного объемного сопротивления в интервале температур от —60° до 4-200° С и даже выше и более высокие значения удельного объемного сопротивления при 175—200° С. Тангенс угла диэлектрических потерь полиарилатов диана в интервале температур от —60° до —200° С не превышает 4— 5 10- , а для полиарилатов фенолфталеина 5—8 10- в интервале температур от —60° до —250° С. Максимум дипольно-эластических потерь полиарилатов располагается в области более высоких температур, чем у полиэтилентерефталата и поликарбоната диана. Так, если максимум б у полиэтилентерефталата приходится на 140° С, у поликарбоната диана на 200° С, то у смешанного полиарилата изофталевой, терефталевой кислот и диана состава 0,15 0,85 1 молей он приходится на 250° С, а у полиарилатов Ф-1 и Ф-2 не наблюдается еще и при 300° С. [c.262]

    Саито и Накажима исследовали электрические свойства ряда полимеров в широком диапазоне частот и температур. Кроме того, авторы попытались установить соответствие между температурой, при которой наблюдается резкое изменение диэлектрической проницаемости, и температурой стеклования, измеренной дилатометрическим методом. Установлено, что для кристаллизующихся полимеров (полиэтилентерефталата, полиакрилонитрила, сополимера винилхлорида с винилиденхлоридом) температура перехода оказывается одной и той же при измерениях по обоим методам. С другой стороны, для аморфных полимеров (поливинилацетата, полистирола, полиметилметакрилата) температура перехода, определенная электрическим методом, не согласуется с температурой стеклования по данным дилатометрических измерений. В связи с эти.м был сделан вывод, что у этих аморфных полимеров отсутствует температура стеклования в обычном ее смысле. Шацки же , проанализировавший те л<е самые экспериментальные данные, пришел к выводу о том, что дилатометрические измерения вообще нельзя использовать для оценки температуры стеклования и что наиболее достоверные результаты получаются именно с помощью электрических измерений. [c.149]

    Полимеры часто используются в условиях повышенной относительной влажности воздуха. Для ряда полимерных диэлектриков, применяемых, например, для изготовления электретов, стабильность электрических свойств и прежде всего проводимости в таких условиях является важным условием их успешной эксплуатации. Наиболее подробно объемная уу и поверхностная уз электрические проводимости при относительной влажности воздуха 95 3% изучена в работе [41] для полимеров различного химического строения. Исследовались образцы пленок полипропилена, полистирола, полиэтилентерефталата (ПЭТФ), полиимида ПМ-1, фторопласт-4МБ-2 и -ЗМ толщиной 10 — 40 мм, диэлектрическая проницаемость которых варьировалась в пределах от 2,0 до 3,5. Было установлено, что для неполярных и слабополярных полимеров уу практически не зависит от влажности и составляет для указанных полимеров 10-16—10-17 См/м при времени выдержки под напряжением ё 10 В/м 3600 с, тогда как 5 возрастает для полярных полимеров (ПЭТФ и ПМ-1) на 3—4 порядка. Резкое увеличение уз связано с образованием на поверхности полимерных пленок тонкого слоя адсорбированных молекул воды. Об этом свидетельствует корреляция между поверхностной проводимостью и углом смачивания 0. Как видно из рис. 24, зависимость уз от 0 хорошо описывается следующим эмпирическим соотношением  [c.59]

    Саито и Накажима исследовали электрические свойства ряда полимеров в широком диапазоне частот и температур. Кроме того, авторы попытались установить соответствие между температурой, при которой наблюдается резкое изменение диэлектрической проницаемости, и температурой стеклования, измеренной дилатометрическим методом. Установлено, что для кристаллизующихся полимеров (полиэтилентерефталата, полиакрилонитрила, сополимера винил- [c.149]

    Было показано, что механические свойства растянутых полимерных пленок существенно зависят от степени ориентации полимерных цепей и от кристаллизации в пaчкax Кристаллизация полимера именно в таких первичных структурных образованиях с сохранением прозрачности пленок была доказана рентгеноструктурным анализом плоскостнорастянутых пленок и определением температурной зависимости диэлектрических потерь. Характер сочетания закристаллизованных пачек в более сложные вторичные структурные образования, а также характер и размеры межкристаллитных областей пленки удалось выяснить, используя метод травления поверхности пленок полиэтилентерефталата, изготовленных различными способами. Во всех образцах пленок содержалась определенная доля кристаллического полиэтилентерефталата. Относительное уменьшение доли аморфной части в пленках регистрировали сравнением рентгенограмм пленок до и после травления. Поверхности пленок после травления изучались с помощью электронного микроскопа методом реплик. Полу- [c.185]


Смотреть страницы где упоминается термин Полиэтилентерефталат диэлектрические свойства: [c.676]    [c.352]    [c.145]    [c.102]    [c.160]    [c.181]    [c.145]    [c.18]    [c.75]    [c.272]    [c.272]    [c.339]    [c.120]   
Волокна из синтетических полимеров (1957) -- [ c.411 , c.412 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства

Полиэтилентерефталат

Свойства полиэтилентерефталата



© 2024 chem21.info Реклама на сайте