Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация полимеров дипольно-сегментальная

    Интересно, что и для диэлектрической релаксации олигомеров винилацетата (степень полимеризации 5) и метилметакрилата (степень полимеризации 3) характерно распределение по временам релаксации, близкое к распределению по временам релаксации для дипольно-сегментальной поляризации соответствующих полимеров, несмотря на большие различия в температурном интервале, где проявляется релаксация [220]. [c.145]


    Спектры токов ТСД, т. е. зависимости j = f[T i)], обычно содержат один или несколько максимумов, причем их положение и направление тока в максимуме могут зависеть еще и от характера контакта электрета с электродами [175]. Для полярных полимерных пленок некоторые максимумы тока ТСД могут быть связаны с релаксацией остаточной (замороженной) поляризации (например, дипольно-групповой р-релаксацией и дипольно-сегментальной а-релаксацией). Изучение этих пиков, которые должны быть связаны с гетерозарядом, является основой так называемого электретно-термического анализа [2, с. 132— 167]. Кроме того, в спектре токов ТСД обнаруживаются пики, связанные с освобождением носителей, захваченных на ловушках в полимере в процессе зарядки электрета, и дрейфом этих носителей в поле электрета (р-пики или пики, связанные с релаксацией объемного заряда). Наконец, существенную роль в процессе релаксации заряда может играть собственная проводимость у полимерных пленок, и для выделения этой составляющей требуется параллельное исследование температурной зависимости проводимости полимерных пленок у = Т) и спектров токов ТСД. По спектрам токов ТСД можно оценивать и стабильность электретов из различных полимерных пленок. Очевидно, стабильность тем выше, чем при более высокой температуре расположен основной максимум тока ТСД. [c.196]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    Диэлектрический метод оказывается пригодным как для полярных (поливинилхлорида, политетрафторэтилена), так и для неполярных полимеров (полиэтилена, полистирола и т. д.), поскольку полимеров, абсолютно лишенных полярных групп или примесей, практически не существует. Для всех полимеров установлены два типа диэлектрических потерь дипольно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше 7 с кооперативно, так как движения [c.183]


    Для статических режимов характерны изменения во времени токов поляризации, аналогичные явления ползучести и релаксации напряжения при механических воздействиях. Для нх исследования применяют метод термостимулированной деполяризации, аналогичный методу термостимулированного сокращения предварительно деформированного полимера. При воздействии переменного электрического поля в полимерах возникает несколько типов релаксационных процессов низкотемпературные р- и у-переход и а-переход в области стеклования. Первые два относятся к так называемым дипольно-групповым, где кинетическими единицами являются боковые привески (V-переходы) или мелкомасштабные участки (звенья) главной цепи (р-переход). Процесс а-релаксации в электрических полях называют дипольно-сегментальными, так как кинетическими единицами этого процесса являются сегменты. [c.249]

    Для аморфных полимеров, к которым относятся и эпокси.а-ные, установлено наличие двух основных видов релаксационных процессов. Первый связан с кооперативным движением сегментов макромолекул, реализуемом при переходе из стеклообразного состояния в высокоэластическое (а-процесс). В случае исследования диэлектрической (или дипольной) релаксации данный процесс называют дипольно-сегментальным. Он охватывает довольно большие молекулярные объемы и сопровождается изменением конформации цепей. [c.8]

    В аморфных полимерах наиболее интенсивный максимум е" или проявляется в области перехода из стеклообразного в высокоэластическое состояние. Он обусловлен микроброуновским движением сегментов полимерных цепей. Диэлектрические потери такого рода получили название дипольно-сегментальных. Процессы диэлектрической релаксации, обусловленные молекулярной подвижностью локального типа, называют диполь-но-групповыми. [c.192]

    Значения энергии активации Ц/ для дипольно-сегментальных процессов различных полимеров колеблются от нескольких десятков до сотен кДж/моль, причем, как правило, чем выше температура стеклования полимера, тем больше энергия активации. Если определять как температурный коэффициент времени релаксации в широком интервале частот [c.85]

    В настоящее время изучено влияние давления на дипольную ориентационную поляризацию большого числа аморфных полимеров и некоторых частично кристаллических полимеров. На рис. 37 в качестве примера приведены зависимости 1 /макс от обратной абсолютной температуры для поливинилхлорида. Из рис. 37 видно, что при постоянной температуре увеличение давления приводит к смещению максимумов дипольно-сегментальных и дипольно-групповых потерь к более низким частотам, а при измерениях на постоянной частоте — к более высоким температурам. Таким образом, если при повышении температуры время релаксации уменьшается, то повышение давления вызывает увеличение времени релаксации. [c.88]

    В переменных электрических полях наблюдаются аналогичные механическим диэлектрические дипольно-сегментальные потери, природа которых та же — сегментальная подвижность. В полимерных стеклах сегментальная подвижность играет важную роль, так как является причиной многих явлений (стеклование, вынужденная высокоэластичность, ползучесть, квазихрупкое разрушение, трещины серебра и т. д.). В кристаллических полимерах сегменты могут находиться в трех различных состояниях, а в наполненном аморфном полимере — в двух состояниях, что приводит к мультиплетности релаксационных спектров а-процесса релаксации. Основным при этом остается а-процесс, ответственный за стеклование. Его вклад, как можно судить по высоте максимумов на спектрах, существенно больше, чем остальных процессов этой группы. [c.199]

    Электрические свойства. Михайлов и Сажин [1011] при исследовании диэлектрических потерь и проницаемости кристаллизующихся полимеров нашли, что у полиамидов наблюдается два вида потерь, связанные с различными видами теплового движения. Потери высокочастотной релаксации аналогичны дипольно-радикальным потерям аморфных полимеров и отображают тепловое движение небольших участков молекул частично закристаллизованного вещества в аморфной фазе. Потери среднечастотной релаксации аналогичны дипольно-эла-стическим потерям и связаны с сегментальным тепловым движением молекулярных цепей вещества в аморфной фазе. Величины tg б и Е полиамидов возрастают при увеличении полярности полимера. [c.265]

    На рис. 9.11 приведена температурная зависимость tgб изотактического (/), синдиотактического (2) и атактического (5) образцов полиметилметакрилата. Из рисунка видно, что температурные зависимости tg б дипольных потерь синдиотактического и атактического полиметилметакрилата в широком интервале температур почти полностью совпадают. Для образцов синдиотактического полимера наблюдается лишь некоторый сдвиг области дипольно-сегментальных потерь в сторону более высоких температур, что свидетельствует о большей затрудненности движения сегментов цепа синдиотактического полимера по сравнению с атактическим и согласуется с повышенным значением 7 с этого полимера. Поэтому можно считать, что времена релаксации дипольно-группового процесса, связанные с подвижностью боковых цепей, практически одинаковы для синдио- и атактического полиметилмет- акрилата.  [c.255]


    Растяжение полимера может приводить как к увеличению, так и к уменьшению времени релаксации дипольно-сегментальных потерь— в зависимости от того, происходит ли при растяжении уплотнение или разрыхление упаковки макромолекул. [c.257]

    В случае кристаллизующихся полимеров обозначение релаксационных процессов усложняется наличием процессов дипольной поляризации, связанных с появлением упорядоченных образований типа кристаллитов, сферолитов и др. Поэтому будет использована двойная терминология, например, для политрифторхлорэтилена процесс дипольной релаксации, связанный с кристаллической структурой, будет обозначаться как -процесс, дипольно-сегментальный процесс релаксации дипольной поляризации в аморфных областях — как р-процесс, а дипольно-групповой процесс как -процесс. [c.125]

    При постоянной температуре между lg / акс и давлением Р существует линейная зависимость [1, с. 19]. Для дипольно-группо-вых потерь величина Хт практически не зависит от температуры и для различных полимеров лежит в пределах от —0,1 10" до —0,6 10 Па" . В области дипольно-сегментальных потерь Ху уменьшается с повышением температуры, т. е. чем больше температура отличается от температуры стеклования, тем меньше влияние давления на время релаксации сегментального движения. Для области дипольно-сегментальных потерь Хт лежит в пределах от —1,3-10- до -7,2-10- Па-1 для различных полимеров [1, с. 219]. [c.135]

    Сопоставление частотных зависимостей фактора диэлектрических потерь для дипольно-сегментального процесса сшитых и линейных аморфных полимеров показало, что у сшитых полимеров области максимумов более широки, т. е. шире спектр времен релаксации. Область температур появления дипольно-сегментальной поляризации зависит от строения отвердителей и густоты сетки. Как видно из рис. 100 при переходе от алифатического ангидрида к ароматическому макс дипольно-сегментальных потерь возрастает. [c.148]

    Дипольно сегментальные потери зависят от хими 1ССкого строения полимеров, которое оказывает влияние па внутри- и меж мол с -кулярпые взаимодействия, а следовательно, на подвижность звеньеп и время релаксации. Чем больше величина внутри- и межмолекулярных взаимодействуй, тем мепее подвижны звенья, тем выше температура, при которой наблюдается максимум ц тем больше время релаксации. Увеличение внутри и межмолекулярного взаимодействия происходит при замене неполярных заместителей на полярные, уменьшение межмолекулярного взаимо действия может быть следствием введения в боковую цепь больших по размеру углеводородных (алкильных) радикалов. [c.280]

    По терминологии Михайлова [157] в полимерах возможны два вида релаксации дипольно-групповая и дипольно-сегмен-тальная. Первый из этих видов релаксации связан с мелкомасштабным движением диполей в главной цепи и боковых привесках (сразу отметим, что по классификации релаксационной спектрометрии это определение переходов включает как собственно р-переходы, так и у-переходы). На рис. X. 2 представлены зависимости как для р- так и для а-переходов. В полимерах а-релаксация связана с сегментальным движением, которое ответственно за структурное и механическое стеклование. Если охлаждение расплава полимера происходит достаточно медленно, чтобы успевала устанавливаться равновесная структура в ближнем порядке, а частоты воздействия электрических полей достаточно большие (обычно больше 10 " Гц), то сегментальная форма движения перестанет успевать следовать за изменением электрического поля раньше, чем произойдет структурное стеклование. Иными словами при температуре Та, > Гст тем большей, чем больше частота, будет наблюдаться электрическое стеклование, в результате которого полимер теряет свойства жидкого диэлектрика и приобретает свойства твердого. Этой температуре соответствует максимум диэлектри- [c.240]

    На рис. 1.1 приведены температурные зависимости е и б этих полимеров. Видно, что в выбранном интервале температур каждый из них характеризуется двумя релаксационными максимумами потерь, причем строение молекул исходных олигомеров оказывает влияние как на низкотемпературный процесс диполь-но-групповой релаксации, так и на реализуемый выше Тс ди-польно-сегментальный процесс. Уменьшение содержания в цепи ароматических ядер приводит к снижению Т гкс дипольно-груп-повых и дипольно-сегментальных потерь и влияет на абсолютные значения г и 1 бмакс. Наряду с этим изменяются [17] и значения энергии активации данных процессов, причем, большее изменение претерпевают параметры дипольно-сегментальной релаксации. [c.14]

    Исследование релаксационных процессов проводилось на системах, состоящих из эпоксидной смолы ЭД-20, стеклянной ткани, пластификатора — диоктилсебацината (15%) и отвердителя — по-лиэтиленполиамина [от 0,7 до 15,0% (масс.)]. Температурные зависимости тангенса угла диэлектрических потерь tg б таких композиций без наполнителя представлены на рис. 1.25. Для образцов, содержащих менее 6—7% отвердителя, наблюдаются два максимума tg6, что характерно для аморфных линейных полимеров и олигомеров. При низких температурах (при —128°С) область дипольно-групповых потерь, а при более высоких (от —20 до 20 °С) — дипольно-сегментальных потерь смещалась в сторону высоких температур при увеличении содержания отвердителя. Исследование образцов, содержащих более 7% отвердителя (рис. 1.25), показывает, что в данном частотном интервале подвижность сегментов в уже образованной трехмерной сетке не проявляется, но возникают два новых процесса при —128 °С (при этой температуре мы ранее наблюдали максимум потерь для системы с малым содержанием отвердителя, рис. 1,25, а, кривые 1—5) и максимум потерь при температурах от —45 до —72 °С, обусловленный подвижностью кинетических единиц больших, чем те, которые ответственны за дипольно-групповое Движение, но меньших, чем сегменты. Они возникают после связывания эпоксидной смолы в трехмерный полимер, т. е. после точки геля. При этом процесс релаксации с увеличением содержания отвердителя в образцах смещается в сторону низких температур. Это свидетельствует о том, что размеры подвижных единиц уменьшаются с увеличением глубины превращения смолы в трехмерный полимер. [c.59]

    Увеличение степени кристалличности приводит к повышению температуры максимума дипольно-сегментальных потерь, т. е. к увеличению наиболее вероятного времени релаксации, при этом температурный коэффициент времени релаксации, т. е. энергия активации, практически пе изменяется. Изменения Гмакс дипольно-групповых потерь при увеличении степени кристалличности носят случайный характер. У некоторых полимеров кристаллизация не влияет на Гмакс дипольно-групповых потерь, у других приводит к небольшому повышению Т макс) 3 У ПОЛИТрИ-фторхлорэтилена, наоборот, — к понижению Г акс. Особенно сильно влияет степень кристалличности на уменьшение фактора диэлектрических потерь в области дипольно-сегментальной релаксации. Так, у полиэтилеитерефталата с изменением степени кристалличности от О до 60% дипольно-сегментальных потерь уменьшается в 4 раза, а дипольно-групповых потерь — всего в 1,6 раза. Увеличение степени кристалличности вызывает резкое уменьшение параметра распределения по временам [c.91]

    Особенностью зависимости наивероятнейшего времени релаксации дипольно-сегментальной поляризации Тр от температуры Т является то, что изменение наклона кривой Igтp = ф(l/7 ) происходит в сравнительно узком интервале температур при т > Тс (см. рис. 36). При этих температурах в полимерах пмеет место один тип дипольных потерь, которые по характеристикам близки к дипольно-групповым. С другой стороны, при температурах на несколько десятков градусов выше Тс Бойер [94] наблюдал релаксационный процесс, названный им переход жидкость— жидкость , которому соответствовала температура Тц. [c.108]

    Обозначим через Т указанные температуры изменения физических свойств полимеров, полагая, что во всех случаях речь идет об одном и том же переходе и сопоставим Т с температурой стеклования Тс. Зависимость Т от Тс оказывается линейной (рис. 52). Каждая точка на рис. 52 соответствует определенному полимеру, в том числе пластифицированным образцам и образцам с различной молекулярной массой. Наблюдаемый разброс точек, по-видимому, связан с тем, что Тс и Т, нанесенные на рис. 52, получены в разных лабораториях различными методами. Связь между Тс и Т может быть представлена как Т = Тс + 76, что весьма близко к выражению Бойера Тц = = , 2Тс. Линейная зависимость lgтp от 1/7 ниже 7 = 7с+ 76 позволяет заключить, что характер кооперативности процесса релаксации дипольно-сегментальной поляризации при таких температурах не меняется, т. е. кинетическая единица содержит близкое к постоянному число мономерных звеньев, совершающих согласованный переход из одного положения равновесия в Другое. [c.108]

    Наименыйие времена релаксации дипольной поляризации свойственны низкомолекулярным жидкостям и разбавленным растворам полимеров. Так, при 50 °С время релаксации пропилового и изобутилового спиртов составляет 2-10- °, а глицерина — 6-10 с. Большие значения т характерны для дипольно-групповых и еще более высокие — для дипольно-сегментальных потерь. При температурах, примерно на 50 °С превышающих 7 с полимера, значения т дипольно-групповых потерь близки к значениям т низкомолекулярных жидкостей. Например, при 50 °С, т. е. при температуре на 43 °С выше 7 с полиметилакрилата, т дипольно-групповых потерь равно 5-10- с. Но при температуре примерно на 50°С ниже 7 с время релаксации дипольно-групповых потерь ПМА составляет 2-10 с, полиметилметакрилата — б-Ю", полиизопропилметакрилата — 2-10 3 с. Время релаксации дипольно-сегментальных потерь при температурах, близких к Тс, имеет порядок 10- с. С повышением [c.248]

    Как видно из формул этих веществ, их боковые цепочки различаются способом присоединения эфирного кислорода. Значения tg бмакс дипольно-сегментальных потерь и т для поливинилацетата больше, чем для полиметилакрилата. Характеристики дипольно-групповых процессов для этих полимеров — максимальные значения 1дб и времена релаксации — также существенно различаются. Так, величина бмакс дипольно-групповых потбрь В полиметил-акрилате почти в 7 раз больше, чем в поливинилацетате, хотя максимум располагается на 60 °С ниже. [c.253]

    Для изучения механизма ионной проводимости полимеров существенное значение имеют сопоставления значений у и подвижности ионов при варьировании различных факторов. Так, при пластификации полистирола неполярным диоксацом значения х и у симбатно возрастают с повышением концентрации диоксана (рис. 17). Аналогичные данные получены для нентапласта при варьировании ег степени кристалличности [62]. В этих случаях значения диэлектрической проницаемости изменялись у полистирола и пентапласта незначительно. Введение в полистирол полярного ацетофенона приводит к росту X и е и более резкому повышению электропроводности, чем подвижности ионов. Это связано с увеличением степени диссоциации ионогена с ростом е в связи с повышением концентрации полярного пластификатора. Подвижность ионов в пептапласте связана с временем дипольно-сегментальной релаксации (см. гл. П1) при изменении степени кристалличности соотношением хта = onst. Т. е. подвижность иона обратно пропорпрональна времени релаксации сегментов макроцепи. Этот вывод открывает возможности разработки подачи перемещения иона в полимерной матрице. [c.39]

    В аморфных полимерах высокотемпературный процесс дипольной релаксации, связанный с сегментальным тепловым движением, будет именоваться -процессом или дипольно-сегментальным, если не-обходимо подчеркнуть его молекулярный механизм. В аморфных полимерах, где наблюдается один процесс поляризации, связанной с локальной формой теплового движения, соответствующий процесс будет называться р-нроцессом или дипольно-групповым. Дипольно-групновые процессы при необходимости подчеркнуть их множественность будут обозначаться как дипольно-групповые р-процессы или дипольно-групповые Y-процессы. [c.125]

    У некоторых полимеров кристаллизация не влияет на температуру максимума дипольно-групповых потерь, у других приводит к небольшому повышению Гмакс а у политрифторхлорэтилена, наоборот, — к понижению Гмакс-Особенно сильно влияет степень кристалличности на уменьшение фактора диэлектрических потерь в области дипольно-сегментальной релаксации. Так, у нолиэтилентерефталата с изменением степени кристалличности от О до 60% Е акс дипольно-сегментальных потерь уменьшается в 4 раза, а биакс дипольно-групповых потерь — всего в 1,6 раза. [c.137]

    Из представленных на рис. 94 зависимостей (Вд—еоо) от степени кристалличности для дипольно-сегментального и дипольно-группового процессов полиэтилентерефталата и полиэтиленоксибензоата видно, что (вд—еоо)д. с уменьшается при увеличении степени кристалличности быстрее, чем (во—8оо)д,г- Аналогичные зависимости были получены и для полиэфира оксиуксусной кислоты [1, с. 228]. Из этого следует, во-первых, что дипольно-сегментальная поляризация может не наблюдаться у полимеров со степенью кристалличности более 80% и, во-вторых, что дипольно-групповая поляризация у многих полимеров связана, по-видимому, не только с молекулярным движениём в аморфных областях полимера, но частично и с молекулярным движением в кристаллических областях. Этот вывод подтверждается исследованиями полиэтилена у полиэтилена низкого давления не наблюдается дипольно-сегментальный р-процесс, а у-нро-цесс характерен не только для полиэтилена низкого давления, но и для монокристаллов полиэтилена [1, с. 228]. Подробное исследование дипольно-групповых потерь -процесса) полихлортрифтор-этилена [1, с. 228] также показало, что они связаны как с аморфными, так и с кристаллическими областями, причем для у-процесса, обусловленного кристаллическими областями, время релаксации меньше. [c.138]

    Известно довольно значительное число работ, где исследовались температурные зависимости тангенса угла диэлектрических потерь ориентированных полимеров, измеренные в электрическом поле, перпендикулярном оси ориентации [1, с. 233]. У аморфных полимеров (поливинилацетата, полиметилвинилкетона, полиметилакрилата) зависимости tg б от температуры у ориентированных образцов отличались от таковых у неориентированных образцов лишь более высокой температурой максимума дипольно-сегментальных потерь, т. е. было замечено лишь влияние ориентации на увеличение времени релаксации сегментального движения. Однако прецезион-ные измерения [1, с. 230, 231], проведенные при частоте 10 Гц для поливинилхлорида и полиметилметакрилата, позволили обнаружить анизотропию е и е" у ориентированных образцов этих полимеров (табл. 6). [c.139]

    При введении в полимер низкомолекулярных пластификаторов изменяется ряд параметров дипольно-сегментальных потерь. Область максимума tg 6 (или е") смещается к низким температурам в соответствии с изменением т. е. наблюдается уменьшение наивероятнейшего Тр. В общем случае, в связи с убыванием числа мономерных звеньев макромолекул в единице объема уменьшается бмакс > хотя при малых концентрациях пластификатора изменение бмакс может компенсироваться ростом этой величины вследствие сужения спектра Тр. Наряду с изменением Тр наблюдается уменьшение наклона кривых Ig Тр—l/r (рис. 110) и в пределе, при достаточном разбавлении, дипольно-сегментальный процесс трансформируется в процессе релаксации, присупщй растворам полимеров. [c.161]


Смотреть страницы где упоминается термин Релаксация полимеров дипольно-сегментальная: [c.196]    [c.249]    [c.278]    [c.125]    [c.192]    [c.89]    [c.92]    [c.136]    [c.151]    [c.92]    [c.102]   
Физика полимеров (1990) -- [ c.248 ]




ПОИСК







© 2025 chem21.info Реклама на сайте