Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также червей

    Как только растительные остатки заделают в почву, они начинают разлагаться под действием множества микроорганизмов грибов, дрожжей и прежде всего бактерий, а также червей и мелких обитающих в почве животных. [c.73]

    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]


    В водоемах, загрязненных органическими веществами растительного и животного происхождения, обильно развиваются простейшие. Простейшие питаются бактериями и взвешенными веществами. Некоторые виды простейших относятся к плотоядным, например корненожки уничтожают в значительных количествах других простейших, а также коловраток и мелких червей. [c.119]

    Сила притяжения к натертому янтарю и некоторые другие проявления электричества были известны уже в древности. По гвоздям из обломков одного старого судна стало известно, что римляне уже знали о контактной коррозии, связанной с протеканием электрического тока. Для защиты от червей-древоточцев на деревянных досках античных гребных судов применяли покрытия из свинцовых пластин, прикрепленных медными гвоздями. Между свинцом и этими гвоздями образовывался коррозионный элемент, так что с течением времени при работе в соленой морской воде менее благородные пластины свинца сильно корродировали вокруг медных гвоздей и отваливались. Античные строители судов нашли простое решение они покрывали свинцом также и головки медных гвоздей. В итоге между обеими металлическими деталями не образовывалось коррозионного элемента и ток между ними уже не протекал, благодаря чему прекращалась и коррозия [20]. [c.32]

    Становится возможным выведение новых сортов растений, устойчивых к вредителям. Например, введение в геном картофеля хитиназы - фермента, расщепляющего хитин в оболочках насекомых, приведет к тому, что колорадский жук теперь будет перевариваться съеденным им картофелем Открыт ген долгожительства у земляного червя - он способен восстанавливать клетки и увеличивать на 65% продолжительность жизни, а также препятствовать старению под влиянием вредных воздействий окружающей среды. [c.63]

    В процессе самоочищения почвы от пестицидов участвуют не только микроорганизмы, но и многие фуппы почвенных животных. Ногохвостки, клещи инактивируют пестициды, изменяя их химический состав. Крупные беспозвоночные (например, дождевые черви), а также кроты, землеройки, перемешивая почву, способствуют процессам самоочищения. [c.164]

    Неорганические и органические соединения от всех живых организмов и растений, попав на поверхность Земли и в почву, также перерабатываются микроорганизмами и другими живыми существами, например червями, в почвенном слое, называемом гумусом, обеспечивая поставку растениям необходимых им элементов (на рис. 4.1 отмечены только N, Р и Ь как основа известных удобрений). Жизнь растений позволила замкнуть круговорот веществ в природе и через почву. [c.311]

    Свободные порфирины —протопорфирин (5.29), уро-порфирин (5.30) и копропорфирин (5.31)—обычно присутствуют в моче и фекалиях животных. Довольно часто они встречаются также в различных тканях животных, однако, как правило, в количествах, недостаточных для придания окраски этим тканям. У беспозвоночных свободные порфирины и гемы, а также их белковые конъюгаты встречаются спорадически, обычными они являются лишь у червей и моллюсков. Наиболее известен пример окраски наружных покровов у дождевого червя  [c.181]


    ЛИШЬ на некоторых общеизвестных видах, которые моп/т быть с успехом использованы как показатели загрязнения. Сюда следует отнести различные группы моллюсков, личинок двукрылых насекомых (комары), а также червей, в основном малощетинковых. [c.25]

    В червя гпо-лопастных смесителях можно смешивать пластические массы и резииы, а также сыпучие и пастообразные материалы. В большинстве случаев эти машины изготовляют с двумя валами — смесительными органами, конструкция которых зависит от фпзико-механических свойств смешиваемых материалов. [c.245]

    Адсорбция газов и паров обусловливает и сопровождает многие промышленные и природные процессы. Так, адсорбция компонен тов является важнейшей стадией любой гетерогенной реакции, например, в системе газ — твердое тело, так как твердая фаза может обмениваться веществом только с адсорбированным слоем. Ог ромную роль адсорбция играет в гетерогенном катализе, когда на поверхности катализатора происходит концентрирование компонентов, определенное ориентирование их молекул, соответствующая поляризация или вообще переход в наиболее активное состояние, форму, что способствует ускорению превращения вещества. Питание растений диоксидом углерода из воздуха связано q предварительной и обязательной стадией адсорбции газа на листьях. Дыхание животных и человека, заключающееся в поглоще НИИ из воздуха кислорода и выделении диоксида углерода и водяных паров, протекает также благодаря предварительной адсорбции кислорода на поверхности легких. Общая площадь поверхности легочных альвеол у человека составляет в среднем 90 м . У одноклеточных и некоторых многоклеточных животных, например у плоских червей, дыхание осуществляется всей поверхностью тела. [c.146]

    Хитин - сложный полисахарид, широко распространенный в природе. Он выполняет в основном физиологическую функцию опорного панциря у различных насекомых, т. е. формирует их экзоскелет. Этот полимер встречается также у червей и бактерий. В растительном мире хитин обнаружен в небольших количествах в фибах и лишайниках. Относительно чистый хитин находят в панцире ракообразных и в крыльях майского жука. [c.329]

    Основную часть активного ила составляют бактерии. На 1 г активного ила приходится ЫО бактерий с суммарной поверхностью 1200 м2. Бактерии представлены а- н р-мезосапробными группами. Их видовой состав зависит от того, какими веществами загрязнена сточная вода. Биоценоз активного ила развивается в условиях ярко выраженных окислительных аэробных процессов, поэтому наряду с други.ми микробами в большом количестве содержатся в нем бактерни-ннтрификаторы (до 3-10 па 1 г активного ила). Кроме одноклеточных бактернй в активном иле развиваются в небольшом количестве нитчатые бактерии, дрожжи и отдельные нити плесневых грибов. Микрофауна активного ила представлена в основном одноклеточными животными — простейшими, но в нем присутствуют также более сложно организованные представители животного мира, например коловратки н круглые черви. Из одноклеточных животных развиваются саркодовые, жгутиковые, ресничные и сосущие инфузории. [c.305]

    Практическое применение кинетической модели со сложной трофической структурой связей целесообразно, например, при детальном анализе кинетики роста микроорганизмов активного ила в процессах биологической очистки сточных вод. Так, сложные трофические связи биоценоза активного ила характеризуются взаимодействием гетеротрофных бактерий ( жертва ) и сапрозой-ных простейших ( хищник ), инфузорий и коловраток, питающихся бактериями и простейшими, а также хищных коловраток и червей, питающихся голозойными инфузориями [13]. [c.60]

    В процессе биологической очистки в отличие от большинства процессов биосинтеза, где преобладает монокультура, участвуют различные группы организмов, формирующие структуру биоценоза активного ила, куда могут входить гетеротрофные и автотрофные нитрифицирующие бактерии, сапрозойные простейшие, а также инфузории, коловратки и черви. В процессе биологической очистки структура биоценоза активного ила меняется в зависимости от условий развития и взаимоотношения различных групп, определяемых наличием питательного субстрата, условиями аэрации и продолжительностью очистки. Основным фазам роста ила при утилизации органического субстрата соответствует последовательное изменение биоценоза от микроорганизмов с сапрозойиым способом питания до организмов-хищников. По мере снижения концентрации органических веществ в сточной воде происходит отмирание бактерий и их потребление голозойными простейшими, количество которых увеличивается. Далее, ио мере истощения субстрата простейшие становятся нищей для хищных инфузорий, коловраток н червей [11]. Характер изменения численности особей по отдельным группам иллюстрирует график на рис.-4.18. [c.219]


    В ядрах клеток дрожжей, насекомых, червей содержится в 5—10 раз, а у млекопитающих в несколько сотен раз больше ДНК, чем в клетке Е. соИ. Содержание ДНК в расчете на гаплоидный геном в целом увеличивается с возрастанием сложности организма. У амфибий и растений оно сильно варьирует от вида к виду и может значительно (в 10 раз и более) превышать количество ДНК в клетках млекопитающих. Однако было бы неверным считать, что прогрессивная эволюция, как правило, сопровождается увеличением содержания ДНК в расчете на гаплоидный геном. Известны также случаи, когда достаточно близкие виды содержат количество ДНК, различающееся в несколько раз. Это явление описано как парадокс содержания ДНК (англ. С value paradox), который до сих пор не получил достаточно определенного объяснения. Таким образом, размеры геномов не коррелируют с тем количеством ДНК, которое предназначено для выполнения функции кодирования бе.лков. [c.185]

    Высокая консервативность гомеоблока проявляется не только при исследовании разных генов развития у дрозофилы. Перекрестная гибридизация с гено.мами червей, иглокожих и позвоночных, включая человека, выявила наличие нескольких фрагментов геномной ДНК, гибридизующихся с гомеоблоком дрозофилы. Если гены этих организмов, содержащие подобные последовательности, также вовлечены в регуляцию ключевых этапов развития, то гомеоблок дрозофилы может рассматриваться как способ их выявления и клонирования. Регуляторные механиз.мы, контролирующие развитие, могут оказаться более универсальными, чем ожидалось. [c.218]

    Балтман и Саутвелл [11] провели испытания экспериментальных полимерных материалов, пригодных, в частности, для изготовления изолирующих оболочек морских электрических кабелей. Испытания продолжительностью от 6 до 14 месяцев проходили у Тихоокеанского (остров Наос) и Карибского (Коко-Соло) побережий Зоны Панамского канала. Всего было изготовлено 25 образцов материалов на основе ПВХ, содержавших различные комбинации трех пластификаторов, трех токсичных добавок (токсикантов) и самых разнообразных инертных наполнителей. Испытаны также промышленные образцы ацетобутирата целлюлозы. Присутствие инертных наполнителей, токсикантов и изменение твердости ПВХ пластиков слабо отражалось на степени повреждения образцов фоладидами. В то же время отмечено, что пластики, содержавшие неорганические инертные наполнители или токсиканты, почти не подвергались воздействию корабельных червей (твердость материала и в этом случае оказывала слабое влияние). [c.461]

    БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы качеств. обнаружения и количеств, определения неорг. и орг, соединений, основанные на применении живых организмов в кач-ве аналит. индикаторов. Живые организмы всегда обитают в среде строго определенного хим. состава. Если нарушить этот состав, напр., исключив из питательной среды определяемый компонент или введя его дополнительно, организм через нек-рое время подаст соответствующий сигнал. В Б. м, а. устанавливаются связи характера и (или) интенсивности ответного сигнала с кол-вом определяемого компонента. В кач-ве индикаторов применяются микроорганизмы (бактерии, дрожжи, плесневые грибы), водоросли и высшие растения, водные беспозвоночные и позвоночные животные (простейшие, ракообразные, моллюски, личинки комаров, олигохеты, пиявки, рыбы и др.), насекомые, черви, а также ткани, разл. органы и системы (нервная, кровеносная, половая и др,) теплокровных. Питательная среда м, б. естественной, искусственной или синтетической. [c.287]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Аннелиды (Annelida, кольчатые черви) считаются эволюционными предками членистоногих. Существующие в настоящее время виды этого типа включают дождевых червет , пиявок и около 10 видов морских полихет (многощетинковых червей). У кольчатых червей имеется полость тела, отделенная от пищеварительного тракта и выстланная специальным слоем эпителиальных клеток. Они обладают также хорошо развитой кровеносной системой, причем в их крови обычно содержится гемоглобин или родственное соединение — эритрокруорин. [c.53]

    Многие беспозвоночные являются истинно факультативными анаэробами, способными выживать длительное, а иногда и неопределенно долгое время в отсутствие кислорода [39а, Ь]. К ним принадлежат черви As aris (рис. 1-10), а также устрицы и другие моллюски. К числу главных конечных продуктов их анаэробного метаболизма относятся сукцинат и аланин. Первый может образовываться при смешанном кислом брожении наряду с пируватом. Далее у As aris lutnbri oid.es, который фактически является облигатным анаэробом, пируват превращает- [c.351]

    Круглые черви Nema-toda (рис. 58), также относящиеся к типу первичнополостных, в небольшом количестве всегда присутствуют в активно.4 иле. Форма тела их подобна веретену, имеет круг- [c.183]

    Ферментативный гидролиз целлюлозы осуществляется при участии фермента целлюлозы. Высшие животные не усваивают целлобиозу и целлюлозу, так как не обладают разлагающим ферментом. Черви, улитки, гусеницы и многие микроорганизмы, содержащие ферменты целлюлозу и целлобиазу, способны расщеплять целлюлозосодержащие растительные ткани. При гидролизе целлюлозы в присутствии концентрированных кислот образуется только Р-глюкоза. Возможен также частичный гидролиз целлюлозы с образованием редуцирующего дисахарида целлобиазы, в котором между двумя остатками глюкозы -Р-1,4-глюкозидная связь. Отличительной способностью обладают жвачные животные (например, коровы), которые могут питаться целлюлозой, поскольку в одном из отделов их желудка есть бактерии, продуцирующие фермент целлюлазу. Этот фермент расщепляет ее и превращает в О-глюкозу. [c.390]

    В базальных сообществах Ko hia s oparia, находящихся на начальной стадии сукцессии с более сухим микроклиматом, разнообразие почвенной мезофауны снижается (табл. 4.6). Минимальна встречаемость энхитреид, дождевых червей, костянок. У жесткокрылых здесь также выпадает несколько групп (табл. 4.7). Аналогичная тенденция отмечена и в отношении двукрылых (табл. 4.8). Дисперсионный анализ выявил достоверное влияние территории предприятия на обилие пауков (табл. 4.10).,  [c.107]

    В весенне-летний период интенсивного развития водорослей (цветения водоема) содержание фитопланктона в поверхностных водах может достигать 50 тыс. клеток в 1, мл. Летом зоопланктон отличается большим разнообразием и представлен низшими ракообразными, коловратками, личинками моллюска дрейссены. В воде могут оказаться и бентосные организм черви, личинки насекомых. В зимний период в воде встречаются, в основном, низшие ракообразные. Число организмов зоопланктона обычно выражают числом экземпляров в 1 м воды. В воде источников встречаются также организмы, видамые невооруженным глазом. Их число оценивают числом экземпляров в 1 м Для рек средней полосы европейской части нашей страны концентрация зооплактона составляет 100 10 000 экз. в 1 м воды. [c.37]

    Эргостерин (XXXVI) содержится в тканях низших животных, в растениях (в корнях скополии, в ростках пшеницы и др.), спорынье, грибах, дрожжах, плесенях, а также в яичном желтке. Среди других стеринов его содержание составляет в дрожжах 98 — 99%, в улитке Arion empiri ori-um 19—25%, в земляном черве 22%, в стеринах хлопкового масла 5%. [c.130]

    Среди беспозвоночных обусловленная гемоглобином окраска наблюдается у многих многощетинковых и однощетинковых кольчатых червей (например, у мотыля ), а также при некоторых условиях у ветвистоусых и листоногих rusta eae. Однако гемоглобин вносит свой вклад в окраску лишь небольшого числа животных, позвоночных и беспозвоночных. [c.176]


Смотреть страницы где упоминается термин также червей: [c.87]    [c.808]    [c.165]    [c.392]    [c.72]    [c.88]    [c.349]    [c.273]    [c.59]    [c.339]    [c.588]    [c.82]    [c.50]    [c.335]    [c.511]    [c.525]    [c.551]    [c.171]    [c.121]    [c.218]    [c.1036]    [c.176]   
Биология Том3 Изд3 (2004) -- [ c.87 , c.361 ]




ПОИСК







© 2025 chem21.info Реклама на сайте