Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура формирующие технологическую

    При сычужно-кислотном способе свертывания молока сгусток формируется комбинированным воздействием сычужного фермента и молочной кислоты. Под действием сычужного фермента казеин на первой стадии переходит в параказеин, на второй — из параказеина образуется сгусток. Казеин при переходе в параказеин смещает изоэлектрическую точку с pH 4,6 до 5,2. Поэтому образование сгустка под действием сычужного фермента происходит быстрее, при более низкой кислотности, чем при осаждении белков молочной кислотой, полученный сгусток имеет меньшую кислотность, на 2... 4 ч ускоряется технологический процесс. При сычужно-кислотной коагуляции кальциевые мостики, образующиеся между крупными частицами, обеспечивают высокую прочность сгустка. Такие сгустки лучше отделяют сыворотку, чем кислотные, так как в них быстрее происходит уплотнение пространственной структуры белка. Поэтому подогрев сгустка для интенсификации отделения сыворотки не требуется. [c.195]


    Диффузия примесей в монокристаллический материал является одной из основных технологических операций при создании полупроводниковых приборов. При помощи ди( к )узии формируются области с определенным типом проводимости и градиентом концентрации в различных участках пластины полупроводникового материала, создаются диодные и транзисторные структуры, резисторы и прочие элементы интегральных схем. [c.150]

Рис. 1.2. Типовые структуры, формирующие технологическую сеть НПП и НПК Рис. 1.2. Типовые структуры, формирующие технологическую сеть НПП и НПК
    Множество различных структур, формирующих технологическую сеть НПП и НПК, с учетом геометрии внешних связей и особенностей их моделирования в задачах планирования может быть сведено к основным типам, представленным на рис. 1.2. В каждой из этих структур осуществляется определенная типовая операция, которая в реализации имеет детерминированный или вероятностный характер. [c.7]

    Наиболее удобно организовать такие производства по блочно-модульному принципу, особенно если невелик тоннаж продукции. Декомпозиция технологических процессов осуществляется не по продуктовому принципу, а по критерию аппаратурной аналогии их технологических стадий. В процессе синтеза схем вначале формируется оптимальный набор аппаратурных модулей, из которого в процессе эксплуатации цеха формируется технологическая структура. [c.158]

    В которой методом морфологического анализа выделяется множество допустимых объектов исследования по аксиоматическим моделям выбираются адекватное аппаратурное оформление и тип аппаратурной структуры химико-технологических систем формируются их структурно-функциональные модели и алгоритмы оптимизации и по этим алгоритмам производится их структурная и параметрическая оптимизация. Такой подход дает возможность в диалоге пользователя с ЭВМ значительно сократить первоначальное пространство поиска оптимального решения. [c.142]

    Формирование покрытий. Комплекс физико-механических, защитных и других свойств покрытий, а также их структура формируются в процессе их образования. Основными параметрами технологического процесса являются температура и время нагрева. [c.154]

    Структура ингибированных пленок, полученных по такой технологии, показана на рис. 5.26. Их особенность состоит в том, что внешние слои пленок имеют монолитную беспористую структуру. Двухслойная пленка (рис. 5.26, а), полученная по технологической схеме, которая приведена на рис. 5.25,а, содержит обращенный внутрь упаковки слой В из полимерного материала, растворимого в ингибиторной жидкости, и наружный стой А из несовместимого с ингибитором полимера. Слой В имеет монолитную 1 и содержащую ингибитор пористую 2 части. Полимерные материалы, толщины слоев и их частей выбирают таким образом, чтобы коэффициент диффузии, а следовательно, и диффузионный поток ингибитора через слой В был больше, чем через А. На рис. 5.26,6 и 5.26, в изображены структуры трехслойных пленок, которые получены по технологиям, приведенным на рис. 5.25,6 и 5.25, в. Они сохраняют отличительные особенности описанной ранее пленки (рис. 5.26,а). Средний слой может быть монолитным (рис. 5.26,6) или иметь пористую часть, содержащую ингибитор (рис. 5.26, в). Последняя структура формируется, если материалы слоев В и С совместимы с ингибитором коррозии, причем растворимость материала С в ингибиторе выше, чем В. Соответственно, содержание ингибитора и толщина ингибиторной части 2 слоя В меньше, чем части 3 слоя С. [c.142]


    При составлении цикловой диаграммы формируется временная структура технологического процесса завертывания изделия, которая характеризуется продолжительностью и последовательностью выполнения технологических операций, транспортных перемещений изделия и холостых (бесполезных) перемещений и остановов исполнительных механизмов. Построенная диаграмма хороша лишь тогда, когда она позволяет получить максимальную производительность и минимальные размеры как отдельных механизмов, так и машины в целом. Однако условия формирования временной структуры существенно зависят от характера технологического процесса.- [c.1201]

    В химии солей кремниевых кислот — силикатов — ввиду сложности их состава традиционной является запись формулы силиката как смешанного оксида. В случае стекол это полностью оправдано и тем, что они являются нестехиометрическими смесями солей и тем, что они аморфны и не имеют регулярной структуры. Основное технологически ценное качество стекла — его пластичность, при высоких температурах позволяющая определенными приемами формировать из него изделия различных назначений и форм. Пластичность стекла — следствие его аморфного строения и некоторой гибкости цепей Si—О—Si. [c.369]

    Гибкая химико-технологическая система, как правило, многостадийная, ориентирована на производство множества целевых или промежуточных продуктов, имеет перестраиваемую технологическую структуру (структурная гибкость) и организационную структуру (организационная гибкость), а также информационно-управляющую подсистему, обладающую адаптивными свойствами (гибкость системы управления). Если гибкая ХТС формируется из аппаратурных модулей, то для нее характерна также аппаратурная гибкость. [c.53]

    Как было показано в предыдущих разделах, обобщенная модель гибкой системы формируется из моделей ее подсистем и координаторов, моделирующих взаимодействия между подсистемами. Однопродуктовой технологической системе также соответствует модель переменной структуры, но структура модели будет восстанавливаться после выпуска одной или нескольких порций целевого продукта (в зависимости от структуры системы ). [c.154]

    В 1970 гг. выходит ряд монографий, посвященных математическому моделированию реакторных процессов [1—3], ректификационных колонн [4], выпарных установок [5], теплообменников [6, 7], формируются кибернетические принципы моделирования [8], обобщаются вопросы математического, алгоритмического и программного обеспечения решения оптимизационных задач [9, 10]. Вместе с тем остро наблюдается дефицит законченных исследований, связанных с моделированием динамических свойств технологического оборудования. Ограниченное количество публикаций [11—15] не позволило к настоящему времени развить и воплотить в реальность идею создания банка типовых нестационарных математических моделей объектов химической технологии, сформулированную еще двадцать лет назад [16], т. е. создать ту информационную базу, которая могла бы эффективно использоваться для анализа и синтеза различных по сложности структур автоматических систем управления. [c.7]

    В зависимости от молекулярной структуры сырья и технологических условий получения отдельные виды углерода различаются не только степенью упорядоченности, однородности поверхности, но и степенью, и характером пористости, формирующейся в результате сложных физико-химических процессов. Наличие пор в массе углерода сказывается на его физической и химической активности при осуществлении различного рода технологических процессов (прокаливания, обессеривания и др.). [c.53]

    Объем, структура и качество потребляемых моторных топлив формируют требования к масштабам и технологической струк- [c.36]

    В проектировании операционной технологии формировалась структура сборочных операций на основе концентраций (совмещение) основых технологических переходов. [c.37]

    В промышленных распылительных сушилках возможны самые разнообразные условия полидисперсность распыленной жидкости, разные температуры по зонам сушильной камеры, в середине и на краю факела распыла, неравномерность смешения распыленных капель с теплоносителем и т.п. Высушиваемая частица может попасть из менее нагретой зоны в более нагретую и наоборот. Мелкие частицы высушиваются и формируются в частицы при более высокой температуре сушильного агента, чем крупные. Этим объясняется многообразие форм высушенных частиц даже для одного продукта это же обусловливает технологические трудности управления морфологической структурой частиц на стадии сушки распылением. Тем не менее, зная закономерности и особенности формо- и структурообразования, можно направленно получать в процессе сушки эмульсионного ПВХ распылением частицы требуемой структуры полые или сплошные, пористые или плотные и т.д. Так, для уменьшения числа и объема пустот в частицах, предотвращения образования осколочных форм, получения сферических частиц рекомендуются следующие технологические приемы [94] введение в латекс поверхностно-активных веществ (ПАВ), снижающих поверхностное натяжение жидкости уменьшение размеров капель создание мягких условий сушки на ранних стадиях формообразования, чтобы избежать вскипания жидкости внутри формирующейся частицы. [c.123]


    В процессе отверждения связующего создается конечная структура ПКМ, формируются его свойства и фиксируется форма изделия. Основные технологические параметры отверждения - температура и время. Необходимо строго выдерживать параметры, разработанные для каждой комбинации связующего и арматуры. [c.82]

    В сложной термохимической технологии очистки нефти от серы, парафинов, воды, газа широко используются высокие давления, температуры, открытый огонь, взрывчатые и токсичные газы, их смеси и др. В установку входят сосуды, работающие под давлением, сложные сепараторы, вентиляторы, дымососы и другое оборудование повышенной опасности. Эти объекты, их качества формируют довольно опасную объемно-пространственную среду, требуют для управления развитую по структуре и информативности систему контроля, программирования с большим количеством элементов, предохранительных, ограждающих, защитных, сигнализационных, контролирующих и других устройств. Системы этого вида характеризуются интенсивным взаимодействием человеческого и машинного звеньев в технологическом процессе. [c.101]

    XVI. Умственный компонент в структуре деятельности, при реализации которого формировалась и проявлялась причина несчастного случая 1—синтез — восприятие и изучение объекта (машины и системы технологического процесса) в целостности, единстве и взаимной связи его частей 2 — анализ — восприятие и изучение объекта с расчленением на составные части в натуре и в абстрактном представлении 3 — координирование — соотнесение функции и объектов деятельности машин, систем 4 — сравнение — сопоставление с выделением, выбо- [c.220]

    Изучение пористости пленок ЗЮ на кремнии. Пленки ЗЮ , используемые в технологии полупроводниковых приборов, не должны содержать сквозных пор. Неудовлетворительная сплошность пленок часто является причиной технологического брака. Макродефекты структуры пленки обычно представляют собой поры, образую-ш,иеся при несовершенном росте окисла, границы кристаллов (если стеклообразная пленка склонна к рекристаллизации) микротрещины, формирующиеся из-за несоответствия коэффициентов термического расширения подложки и пленки. Последние два вида макродефектов встречаются на относительно толстых пленках и могут быть устранены изменением технологического режима. Причиной порообразования могут быть определенные виды загрязнений и структурных дефектов на исходной поверхности кремния. Часто поры могут образовываться за счет окклюзии (захвата) газов, а также при слиянии точечных дефектов (вакансий) в кластеры. Наличие пор в значительной мере осложняет использование оксидной пленки в качестве маскирующего покрытия (поскольку поры являются каналами диффузии) и для изоляции (вследствие возможных замыканий алюминиевой разводки на тело прибора). Как пассивирующее покрытие пленка также непригодна, потому что при этом не обеспечивается герметичность структуры. [c.122]

    Оптимизация процессов на каждом уровне иерархии подчиняется частным критериям оптимальности, формирующим в аддитивной или мультипликативной форме глобальный критерий, в качестве которого используется технико-экономический показатель производства. Исследование и оптимизация БТС на основе критерия оптимальности включает среди прочих две основные группы задач выбор оптимальных условий функционирования технологических элементов и подсистем, их входных, выходных и управляющих параметров для БТС заданной структуры выбор оптимальной технологической структуры и определение эффективной последовательности связей между технологическими элементами и подсистемами, характеризуемыми определенными условиями функционирования. [c.5]

    Вирусные белки могут быть получены генно-инженерным методом, однако нужно учитывать следующие моменты. Как правило, вирусные белки состоят из нескольких полипептидных цепей, в ряде случаев химически модифицированных, Не только в бактериальной, но и в дрожжевой клетке нет структур, осуществляющих созревание таких белков. Следовательно, микробные клетки могут продуцировать только отдельные полипептидные цепи. Это резко снижает или сводит на нет их иммуногенность, которая определяется конформационными антигенными детерминантами, формирующимися в процессе образования третичной или четвертичной структуры белка. Ограниченное применение вирусных белков-антигенов относится к белкам HBS-вируса гепатита В человека и белка УР вируса ящура. HBS-антиген, синтезируемый дрожжевыми клетками, давал иммунный ответ, хотя и меньший по сравнению с инактивированным вирусом, однако достаточно высокий. Образовавшийся белок не секретировался из клеток, а в процессе их разрушения и вьщеления антигена выход его значительно снижался, что ставило под сомнение всю технологическую схему [c.504]

    В процессе подготовки и переналадки ГАПС происходит настройка всех ее подсистем на выпуск продукции изменившегося ассортимента. П0дг010вку системы начинают с [)ешения задачи асси.мпляции (усвоения) технологических процессов производства продуктов нового ассортимента оборудованием гибких систем, т. е. синтезируют систему из уже смонтированного в цехе оборудования с учетом реально существующих материальных и энергетических связей. В процессе ассимиляции продукции нового ассортимента формируют организационную структуру системы, т. е. группируют продукты ио п )ииципу их технологического и аппаратурного сходства, совместимости определяют очередность выпуска продуктов или их групп, технологические мари1руты. Сформировав организационную структуру, разрабатывают календарный план выпуска продукции на планируемый нер од (месяц, квартал, год). Формируют технологическую структуру системы и по уравнениям материального баланса и регламентным длительностям технологических операций проверяют условия достаточности производительности оборудования. [c.70]

    Организационная структура гибкой технологической системы формируется на основе следующих классификационных призпа-сов  [c.152]

    Степень сложности моделей формирования структурь гибкой системы зависит от принятого уровня ее гибкости, В общем слу- ае трудно сформировать модель в аналитическом виде, поэтому структуру системы формируют по эвристическим алгоритмам, Подробно алгоритмы формирования допустимых структур гибких технологических систем и их оптимизации рассмотрены в следующей главе прп решении задачи структурно-параметрического синтеза, [c.152]

    Смысл этого условия заключается в том, что в группу одно-вре ленно производимых должны быть объединены продукты, не имеющие общих аппаратов, причем это условие должно быть проверено для всех сочетаний из п продуктов по 1,2, 3,. .., п. Из оставшихся групп продуктов затем формируются все во.з-можные последовательности их выпуска, т. е. организационная структура гибкой химико-технологической системы, а е11 однозначно соответствует технологическая структура. Подробнее алгоритм формирования структуры гибких технологических си-сте.м р1ассмотрим в разделе 3.1.2, посвященном их синтезу. Поясним это утверждение примером. [c.153]

    Если же сетчатая структура формируется из исходных молекул мономеров (например, фенолформальдегидные, глифталевые смолы) или олигомеров (например, полиэфируретаны, поли-эфиракрилаты), то превращение мономеров или олигомеров в полимеры сетчатой структуры осуществляется, минуя стадию образования из них линейных макромолекул полимера. Таким образом, в этом случае происходит превращение исходных низкомолекулярных веществ, не имеющих каких-либо существенно ценных механических свойств, сразу в полимерные сетчатые структуры с высокими механическими и другими свойствами. В соответствии с этими различиями технологические процессы изготовления изделий, где требуется применение полимеров сетчатой структуры, также принципиально различаются для ш делий, изго- [c.294]

    Подготовка данных начинается с графического изображения структуры схемы. Технологическая схема включает укрупненные АТБ, а также простые блоки смешения и разделения, соотвегствующие всем точкам разветвления потоков над каждым блоком указан его порядковый номер в данной схеме. Для ввода структуры схемы в ЭВМ формируется двухмерный массив СХ, столбцы которого заполняются в последовательности, соответствующей порядковым номерам блоков в схеме. В первой строке массива указываются цифровые коды (имена) всех аппаратурно-технологических блоков (АТБ) схемы 01—АТБ соды, 03 — АТБ сульфата калия, 04 — АТБ двойной соли, 06 — АТБ поташа, 11 — блок смешения потоков, 12 — блок разделения потока. Во второй строке размещается информация о рециклических потоках, которая сообщается с помощью порядковых номеров блоков в схеме. Знак минус соответствует выходящему потоку, знак плюс — входящему. Если во второй строке стоит ноль, то это означает, что в данном блоке нет входящего либо выходящего рецикличе-ского потока. [c.254]

    Технологическая структура системы формируется на основе се организационной структуры. Если каждому продукту соот-иетствует единственный технологический маршрут, то технологическая структура однозначно определяется способом организации технологических процессов. Если имеется альтернатн-1а маршрутов, то организацио1[ная и технологическая структуры определяются итеративно. [c.152]

    Опти1У1изация технологической структуры. Те.хнологичеокая структура блочно-модульного цеха формируется в результате решения задачи о назначении, которая формулируется следующим образом. [c.229]

    В группу объединяются продукты (процессы), не использую-цие одинакового оборудования. Затем формируются условия г Ланового выпуска продукции для фиксированного варианта технологической структуры. Для этого каждый продукт каждой группы сравнивается с каждым продуктом других групп, чтобы использовать для его выпуска одинаковое оборудование. Если выполняется условие [c.294]

    Под поверхностным слоем детали понимается как сама поверхность, полученная в результате обработки, так и слой материала, непосредственно прилегающий к ней. Характерная особенность этого слоя состоит в отличии его свойств от свойств основного материала. Поверхностный слой детали формируется под воздействием технологических факторов, внешней среды и имеет комплекс свойств, которые можно условно разделить на три группы геометрические (шероховатость, волнистость) физикомеханические и химические. К геометрическим параметрам поверхностного слоя относят шероховатость (Яа Кг), волнистость и направление неровностей. К физико-механическим параметрам поверхностного слоя относят дефекты поверхности (задиры, царапины, трепщны, раковины), дефекты материала (деформация отдельных зерен слоев), структурнофазовый состав, субструктуру (размеры блоков, фрагментов, угол раз-ориентировки блоков), кристаллическую структуру (тип и параметр решетки, текстура, плотность дислокаций, концентрация вакансий, остаточные микронапряжения). К химическим свойствам поверхностного слоя относят его химический состав, валентность, ионизационный потенциал и др. [c.16]

    Нет никаких сомнений, что большая часть органического и минерального вещества Вселенной сосредоточено в МСС. По данным [60-66], можно выделить различные виды МСС, отличающиеся своей природой (табл. 1.1). Нефти и нефтяные дисперсные системы, газы и газоконденсаты наиболее изученные МСС [53-59]. Экологические системы, которые также относятся к МСС [63], будут рассмотрены во второй части книги. По данным радиоастрономии газопылевые межзвездные облака, занимающие гигантские области Вселенной, содержат в своем составе органические МСС, состоящие из низших углеводородов ряда метана, гетероатомные азотсодержащие и оксосоединения циан, цианоацетилен, аминокислоты [27]. Живые существа создают МСС из продуктов метаболизма и деградации. Технологические процессы также генерируют МСС. Последние образуются в нефтехимических процессах оксосинтеза Фишера-Тропша, каталитическом риформинге, алкилировании, крекинге, пиролизе и т. д. 19,20,58]. Полимеры также являются МСС. Авторами 25] отмечено, что каждую компоненту полимера с определенной молекулярной массой и структурой можно рассматривать как индивидуальное вещество. Любой полимер это стохастическая система, состоящая из компонентов одного гомологического ряда. В отличие от индивидyi льныx компонентов продукты окислительной, фотохимической деструкции полимеров являются типичными МСС. Таким образом, МСС формируются в результате деструкции и синтезе различных веществ. Системы с разной природой компонентов, включающие высокомолекулярные и низкомолекулярные вещества мало изучены. Целесообразно отдельно выделить высокомолекулярные МСС. Свойства таких систем, не менее нем химическая природа, определяют статистический закон распределения состава и вероятность различия компонентов (глава 2). Вероятность различия компонентов характеризует степень химической неодно- [c.6]

    При большом числе факторов, формирующих производственную структуру предприятия, реи1 1К)щее З1." ние имеют технологические особенности, уровень автоматиза ии произволс-т-венных процессов и полнота хозрасчетных отношений между подразделениями предприятия. [c.21]

    Вид металла, способ его введения и вариации технологических режимов карбонизации волокон определяют структуру, элементный и фазовый состав формирующихся Ме-УВ, позволяют в широких пределах регулировать их свойства Металлосодержащие включения в составе Ме-УВ в виде оксидов, карбидов, высокодисперсных (3-20 нм) восстановленных металлов придают им высокие адсорбционно-каталитические свойства в ряде химических реакций, улучшают смачивание волокон различными видами связующих, влияют на характер взаимодействия реагирую1Ш1Х компонентов на границе раздела фаз волокнистый наполнитель-полимер. Структурно-активные фуппы Ме-УВ могут служить центрами кристаллизации полимеров, ориентировать макромолекулы в гюверхностном слое, изменяя структуру и свойства межфазного слоя и в целом всего армированного волокнами композита. [c.182]

    Несмотря на значительный ассортимент депрессоров и ингибиторов парафиноотложения, механизм их действия остается до последнего времени вопросом дискуссионным. Как правило, рассматриваются два возможных варианта отложения парафина на внутренних поверхностях технологического оборудования и трубопроводов вследствие пересыщения нефтяного раствора при соприкосновении с холодными стенками труб, а также в потоке перекачиваемой нефтяной системы. Улучшение текучести высокозастывающих нефтей и газовых конденсатов и предотвращение парафиноотложения при введении в систему соответственно депрессоров или ингибиторов парафиноотложения связывают с поверхностным и объемным механизмом их действия. Согласно первому механизму, молекулы присадки, имеющие длинные алкильные радикалы, встраиваются в растущие крис га. лы парафиновых углеводородов, начиная со стадии зародышеобразования. При этом полярные функциональные группы присадки ориентируются в дисперсионную среду и тормозят встраивание парафиновых углеводородов в растущую структуру, что ограничивает ее рост. По второму механизму предполагается, что молекулы депрессорной присадки за счет высокой полярности функциональных групп формируют собственные ассоциаты и мицеллы при температурах более высоких, чем температура ассоциатообразования молекул нормальных парафинов. Такие мицеллы содержат полярные группы внутри ассоциата, а алифатические радикалы направлены в дисперсионную среду. Это способствует сольватации таких мицелл молекулами нормальных парафиновых углеводородов и созданию аморфизированных структур. Их кристаллизация в охлажденных нефтяных дисперсных системах носит локализованный характер, и при конденсации [c.242]

    ДФ на основе реализации рассмотренных выше факторов ее до достижения высоких степеней самонаполнения системы, а при исчерпании этих факторов - использование внешних энергетических воздействий, позволяющих поддерживать ДФ в разрушенном, распределенном по всему объему состоянии вплоть до установления степени наполнения системы, при которой она становится кинетически устойчивой из-за образования прочных коагуляционных контактов (после снятия внешних энергетических воздействий). Коагуляционная структура может формироваться также путем постепенного осаждения ДФ по мере образования ее в объеме свободнодисперсной части системы вплоть до полного израсходования вещества последней или до некоторого заданного уровня накопления слоя коагулянта, после чего свободно дисперсная система отделяется. В этом случае агрегативная и кинетическая устойчивость ДФ может быть достаточно низкой, а их уровень должен определяться требованиями к составу, свойствам и размерам ее частиц. На практике часто реализуются промежуточные между этими двумя крайними случаями варианты формирования коагуляционных структур (например, коксование в кубах и необогреваемых камерах) и, как правило, условия их формирования в рассматриваемом аспекте полностью определяются качеством загрузки реактора, температурой, давлением и гидродинамикой, определяемой объемной скоростью подачи сырья и интенсивностью его физико-химических и химических превращений. К сожалению, при этом технологические и гидродинамические условия оказываются "стандартизованными" особенностями действующей установки, но не оптимальными с точки зрения формирования связнодисперсной системы с заданной структурой и свойствами, т.е. КМ оказывается в этом аспекте лишь частично управляемой. [c.110]

    Элементы БТС, составляющие четвертый иерархический уровень, представлены технологическими аппаратами, в которых осуществляются типовые процессы биотехнологии. Математическая модель аппарата формируется на основе его макро- и микросоставляющих в виде блочной структуры. [c.44]

    В практике производства изделий по методу литья для улучшения удобоукладываемости смеси используются составы с содержанием воды, значительно превышающим количество, необходимое для реакции гидратации. В результате формируется макропористая структура с высокой интегральной пористостью системы и плохо развитыми кристаллизационными контактами, что отрицательно сказывается на прочности и водостойкости получаемых изделий. Применение технологии прессования позволяет эффективно снизить водотвердое отношение смесей, существенно сократить технологический цикл производства изделий, с получением непосредственно после прессования их распалубочной прочности. [c.31]

    Следует отметить, что многие магнитные свойства ферритов являются структурно-чувствительными, т. е. сушественно зависят от керамической структуры материала, включая размер и форму кристаллитов, размер, форму и распределение пор. Поэтому проблема изготовления ферритовых керамических материалов с хорошо воспроизводимыми свойствами сводится в значительной мере к получению материалов не только с определенным химическим составом, но и определенной керамической структурой. Более того, получение керамических материалов с воспроизводимыми свойствами является ключевой проблемой материаловедения. Далеко не всегда удается получить материал с необходимым набором свойств, даже если его технология кажется достаточно освоенной, а в процессе изготовления не допущено очевидных технологических промахов. Неудачи особенно часты при получении твердофазных материалов, структура которых формируется в результате топохимических процессов, крайне чувствительных к исходному сырью и способам его переработки. Разумеется, что неприятности значительно усугубляются, когда требования к качеству материалов по тем или иным причинам повышены. Например, технология обычной керамики, используемой в бытовых целях, в свое время была автоматически перенесена на получение специальных видов оксидной керамики,, ъ том числе и магнитных материалов. Напомним, что эта технология включает смешение компонентов керамической массы в мельницах, формование смеси и высокотемпературный обжиг (спекание). Последовательное осуществление этих операций при приготовлении специальной керамики далеко не всегда приводит к успеху. Причины подобных неудач можно рассмотреть на примере получения ферритов с высокой магнитной проницаемостью, в частности марганец-цинковых ферритов состава Мпо,зз2по,б7ре204. Такие ферриты являются основными материалами для создания современных средств магнитной записи с целью высококачественного воспроизведения звука, телевизионных изображений и особенно для регистрации и хранения больших массивов информации. Отметим, что марганец-цинковые ферриты являются наилучшим материалом и для теле- и радиоаппаратуры, так как благодаря исключительно низким диэлектрическим потерям пригодны для изготовления сердечников вторичных источников питания. При их синтезе обычно осуществляют твердофазную реакцию [c.162]

    После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи изготовлению композиционного материала, вк.тючающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения-напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ фаничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, прочность и дру гие важные экс-штуатационные характеристики нового материала. Осуществление кон-тpOJ я не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало усту пать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита. [c.12]


Смотреть страницы где упоминается термин Структура формирующие технологическую: [c.293]    [c.52]    [c.161]    [c.651]    [c.99]    [c.221]   
Методы и модели планирования нефтеперерабатывающих производств в условиях неполной информации (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте