Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура синтетического каучука

    Микроструктура полимерных цепей. Важными элементами молекулярной структуры синтетических каучуков, совокупность которых принято называть микроструктурой полимера, являются строение, пространственная конфигурация и характер взаимного расположения п чередования основных звеньев, образующих лекулярные цепи. [c.19]

    Для получения синтетического каучука изопрен более ценен, чем бутадиен, хотя вследствие большей трудности его производства начали вырабатывать синтетический каучук на основе бутадиена. Изопрен используется для получения бутилкаучука путем совместной полимеризации изобутилена с небольшой добавкой изопрена. Главное применение изопрен наш-ел сравнительно недавно для производства полиизопренового каучука стереорегулярной структуры, получаемого полимеризацией изопрена в присутствии металлоорганических катализаторов аналогично -бутадиеново-му каучуку  [c.484]


    С другой стороны, при помощи озона много узнали о структуре природного и синтетического каучуков, так как он атакует двойную связь, а образовавшиеся озониды могут гидролизоваться с образованием альдегидов или кетонов в зависимости от групп, присоединенных к атомам углерода, соединенным двойной связью. [c.216]

    Синтетическими каучуками называются промышленные продукты, обладающие свойствами каучукоподобного материала и способные к вулканизации. По своему химическому составу и строению они отличаются от натурального каучука, и поэтому их следовало бы скорее называть искусственными каучуками. По своей физической структуре синтетические каучуки несколько отличаются от натурального каучука и, как правило, обладают меньшим (в среднем) молекулярным весом. По некоторым отдельным свойствам синтетические каучуки превосходят натуральный каучук, и это придает им особую ценность как промышленному сырью для резиновой промышленности. [c.20]

    Действие химических реагентов на вещество позволяет лшогое выяснить о его химических свойствах, а полученные таким образом химические производные иногда находят практическое использование. Это особенно справедливо применительно к натуральному каучуку, хотя прошло много лет, прежде чем некоторые из его производных стали применяться в промышленности. В результате воздействия различных химических реагентов получено много сведений о структуре природного и синтетических каучуков. Вследствие большого интереса к этим производным они более детально рассматриваются в следующих разделах. Приводим несколько книг и статей, имеющих определенный интерес, так как в них дано описание этих производных, главным образом производных природного каучука, другие же ссылки даны в тексте. [c.212]

    Известно, что натуральный каучук представляет собой полимер с высокоупорядоченным строением 1,4-цис-полиизопрена. Попытки получения такого синтетического каучука путем обычной эмульсионной полимеризации не приводили к желаемым результатам. Только в последние 6—7 лет была установлена возможность получения стереорегулярных полимеров на базе дивинила и изопрена, структура и свойства которых приближаются или равноценны аналогичным показателям натурального каучука. Успехи в этой области прежде всего были обуслов- [c.339]

    Важными элементами молекулярной структуры синтетических каучуков являются строение, пространственная конфигурация и характер взаимного расположения и чередования основных звеньев, образующих молекулярную цепь полимера. [c.341]


    ИК-спектроскопию полимеров можно применять для анализа структуры синтетических каучуков. В спектре каждого из структур- [c.349]

    Для промышленности синтетического каучука характерны быстрые темпы развития и совершенствования структуры выпускаемых каучуков. Общий объем производства синтетического каучука за 20 лет увеличился более чем в 3,5 раза, а каучуков стереорегулярного строения, полноценно заменяющих натуральный,— более чем в б раз, из них изопренового — более чем в 50 раз, бутадиенового — в 80 раз. [c.9]

    Природный и некоторые синтетические каучуки вулканизируются серой. Вулканизаты содержат серу в химически связанном виде. О структуре вулканизатов известно сравнительно мало. Представляется вероятным, что сера прежде всего взаимодействует с а-метиленовой группой, а затем с двойной связью. [c.225]

    Развитие научных исследований и создание новых каучуков с ценным комплексом свойств определяло изменения в структуре производства синтетических каучуков в СССР. [c.15]

    ЭЛАСТОМЕРОВ С ИХ МОЛЕКУЛЯРНОЙ СТРУКТУРОЙ. МОЛЕКУЛЯРНАЯ СТРУКТУРА ОТДЕЛЬНЫХ ТИПОВ СИНТЕТИЧЕСКИХ КАУЧУКОВ [c.54]

    Глава 3 Связь механизма и условий синтеза эластомеров 54 с их молекулярной структурой. Молекулярная структура отдельных типов синтетических каучуков [c.749]

    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    Основное использование циклогексана — в производстве мономеров для синтеза волокон (адипиновой кислоты и капролактама). Некоторое количество циклогексана применяют в качестве растворителя в производстве пластмасс и синтетического каучука. Производные циклогексана (циклогексанон, циклогексанол, нитроциклогексан) используются в небольшом количестве в производстве красителей, лаков, смол, смазок (из нефтяных остатков) и инсектицидов. Примерная структура потребления циклогексана в США производство адипиновой кислоты — 60%, капролактама — 30 %, остальные производства — 10 %. [c.327]

    Бурно продолжала развиваться эта отрасль промышленности и в послевоенные годы. Время показало, что несмотря на свои очевидные преимущества — дешевизну, возможность быстрого производства в массовых количествах — бутадиен-стирольные, бутадиеновые, хлоропреновые и другие синтетические каучуки все-таки не в состоянии полностью заменить натуральный. Дело в том, что каучук с дерева на 97—99% является цис-полиизопреном со строго определенной пространственной структурой (стереорегулярной структурой)  [c.124]

    Структура углеводородного сырья, используемого для производства синтетических каучуков, для каждой страны определяется не только наличием природных ресурсов нефти н газа, но объемом и направлением нефтепереработки, а также масштабами и техническим уровнем переработки газа на газоперерабатывающих заводах. В США, где очень высокий уровень вторичных процессов нефтепереработки, производство основных мономеров для промышленности СК базируется преимущественно на использовании легких углеводородных газов с нефтеперерабатывающих заводов. В странах Западной Европы и Японии в связи с быстрым ростом производства этилена пиролизом низкооктановых бензинов большое значение приобрели для.этих целей пиролизные фракции. В нашей стране доля пиролизных фракций пока невелика, а основные мономеры — бутадиен и изопрен — преимущественно производятся дегидрированием бутана и изопентана. [c.20]

    При определении экономической эффективности комбинирования учитывают не только снижение затрат, но и повышение сложности управления предприятием и его организационной структуры. Комбинирование эффективно, если объединяют процессы, технологически родственные и основанные на комплексном использовании сырья, например производства продуктов из этилена, пропилена, бутиленов, смол пиролиза производства продуктов из ацетилена и аммиака и метанола производства синтетического каучука и метанола производства синтетического каучука и полибутилена при совместном получении дивинила и бутилена. Однако технико-экономические показатели резко ухудшаются при комбинировании разнохарактерных про- [c.31]


    Производственная структура основных фондов различается по подотраслям, что объясняется техникоэкономическими особенностями этих подотраслей. Наиболее высок удельный вес активной части основных фондов в нефтеперерабатывающей промышленности и промышленности синтетического каучука, где лучше техническая оснащенность аппаратурных процессов и выше уровень специализации, кооперирования и комбинирования производства. [c.23]

    По мере протекания полимеризации с сопряженными двойными связями, например бутадиена, число боковых цепей растет и в конечном итоге приводит к исчерпывающему структурированию. По этой причине в промышленном производстве синтетического каучука полимеризацию обрывают при 60% конверсии, так как полимеры сетчатой структуры уже не поддаются обработке. [c.944]

    В качестве примера можно указать на то, что гибкую линейную форму имеют молекулы многих синтетических и природных полимеров, натурального и некоторых видов синтетического каучука, полиэтилена, полихлорвинила, найлона, капрона, энанта. Двухмерную конфигурацию макромолекул имеют крахмал, дивиниловые каучуки, некоторые полисахариды. Трехмерной структурой макромолекул обладает эбонит, фенолоформальдегидные смолы. [c.328]

    Синтетические каучуки имеют менее регулярную структуру, чем натуральный каучук. Наиболее близки к нему стереорегуляр-ные изомеры синтетических каучуков, получаемые методами анион-1юй полимеризации в присутствии гетерогенных катализаторов (катализаторы Натта, алфиновые катализаторы, металлалкил , , литий). Однако эти методы, применение которых связано с известными трудностями, пока не получили широкого распростра нения. В макромолекулах стандартных промышленных синтетических каучуков имеются 1-4-, 1-2-, 3—4-структуры, звенья с различным расположением замещающих групп относительно [c.236]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]

    Бутадиеновые каучуки. Первым мономером, на примере которого были изучены многие закономерности процесса полимеризации, структура и свойства полимеров, а также создано промышленное производство синтетического каучука (благодаря работам академика С. В. Лебедева) явился бутадиен-1,3. Этот доступный и дешевый мономер широко используется. Помимо каучуков, синтези- [c.14]

    Комбинирование наиболее полно отвечает специфике нефтепереработки и нефтехимии, так как обеспечивает улучшение использования комплексного сырья, сокращает его расход, уменьшает стадии переработки, затраты на транспорт сырья и полуфабрикатов, уменьшает складские запасы, а отсюда приводит к улучшению технико-экономических показателей. Помимо комбинатов, в промышленности имеются и специализированные заводы синтетического каучука, топливные, топливно-масляные. Но и эти заводы в своем составе имеют множество технологических процессов. Тип завода и степень комбинирования во многом определяются количеством исходного сырья, обеспеченностью сырьем и топливом, структурой потребности экономического района, мощностью предприятия. [c.34]

    Изопрен [1—12] был впервые получен в 1860 г. в результате сухой перегонки каучука [13]. Вскоре после того как стало известно, что изопрен является основным элементом структуры натурального каучука, были предприняты попытки его синтеза. Работа эта задержалась на некоторое время, так как удалось получить качественный синтетический каучук на основе бутадиена, например стирол-бутадиено-вый и стирол-акрилонитрильный. Однако позже эти тины перестали удовлетворять возросшим требованиям и для специальных применений до сих нор требуется натуральный каучук. [c.213]

    Эффективность антиоксиданта не может явиться единственным критерием для рекомендаций по практическому его применению. Специфические особенности структуры синтетических каучуков и технологии их производства обусловливают необходимость располагать данными по их химическим, физико-химическим, токсикологическим и некоторым другим свойствам. Только при наличии этих данных можно предложить обоснованную рекомендацию по применению того или иного антиоксиданта для конкретных делей. [c.642]

    Струтинский Л. К., Исследование структуры синтетического каучука рентгеновским методом, Отч. № 137-35. [c.340]

    Целесообразно кратко охарактеризовать наиболее важные сорта синтетических каучуков, чтобы иметь необходимые общие сведения о них, которые потребуются для сопоставления их. Синтетические каучуки по своим свойствам вполне сравнимы с натуральными каучуками, а некоторые из них характеризуются весьма желательными и технически ценными свойствами, отсутствующими у природных каучуков. По химической структуре природный каучук можно рассматривать как полимёр изопрена, т. е. 2-метилбутадиена-1,3. Этот углеводород никогда не был обнаружен в каучуконосах, но он обычно используется в сравнительно незначительных количествах нри производстве синтетического каучука из изобутилена (97%). Небольшое количество изопрена придает бутил-каучуку способность к вулканизации серой. Бутилкаучука производится 65 ООО т в год и ввиду своей высокой герметичности к воздуху (почти в 10 раз выше, чем у природного каучука) ой используется почти исключительно для производства камер. [c.210]

    Положение изопрена в этой структуре видно из линий разрыва, показанных точечными линиями. Пумерер с студентами повторил работу Гарриесса, используя в своих опытах каучук более высокой степени очистки и более совершенные методы они увеличили выход углеводорода каучука в виде продуктои разрушения углеродного скелета до 95% вместо 70% у Гарриесса. Продукты эти на 90 % состояли из ленулиновых соединений [28, 29J. Озон помог выяснить строение нескольких синтетических каучуков, в частности удалось показать, что бутадиен и изопрен присоединяются как в положение 1,2 (или 3,4), так и в положение 1,4. Эти данные были подтверждены методом инфракрасной спектроскопии и другими методами анализа. [c.216]

    Сырьем для производства исходных мономеров для получения синтетического каучука служат этиловый спирт, пентаны, нормальный изобутан, метан (для синтеза изопрена), этан, низкооктановый бензин. Характерным изменением в структуре сырья для получения синтетического каучука является увеличение доли изобутана, пентанов, бутан-бутиленовой фракции с иефтеперерабатываю-. щих предприятий, а также фракции С4 газов пиролиза. [c.53]

    Следует подчеркнуть, что спонтанно образующийся в небольших количествах микро- либо макрогель является, как правило, очень рыхлым — лишь ничтожная доля имеющихся в геле узлоа является эластически активной, т. е. участвует в образовании сетчатой структуры [32, 40]. Такой гель легко разрушается в процессе переработки синтетических каучуков и поэтому сравнительно мало влияет на свойства резиновых смесей и вулканизатов. [c.67]

    Каталитическая активность металлов переменной валентности в процессах окисления и старения синтетических каучуков зависит от следующих факторов природы металла переменной валентности валентного состояния металла химической структуры каучука содержания металла переменной валентности природы ан-тиокспданта, применяемого для стабилизации каучука наличия в каучуке веществ, способных связывать металлы переменной валентности в соединения (комплексы или хелаты), которые являются неактивными в процессах окисления или других превращениях каучуков. [c.629]

    Очень эффективными антиоксидантами для синтетических каучуков являются производные п-фенилендиамина. Они способны ингибировать радикальные процессы, инициируемые не только ROO-, но и R и R0 (неозон Д не ингибирует процессы, инициируемые R-). Кроме того, при ингибировании цепных радикальных процессов они образуют хинониминные структуры, которые также являются ингибиторами этих процессов, хотя и менее эффективными чем исходный диамин. [c.635]

    Ниже приведена структура потрв Зления (в %) мономеров для синтетического каучука в СССР  [c.184]

    Более 80% бензола расходуется на изготовление всего трех продуктов — этилбензола, изопронилбензола и циклогексана.у Судя по прогнозам [8, 9], до 1985 г. структура потребления бензола принципиально не изменится. В последующем ожидается ускоренный рост потребления бензола для производства анилина и малеинового ангидрида. В США к 1990 г. предполагается значительный рост мощностей по производству изопрапилбензола и фенола в связи с ожидаемым резким увеличением спроса на биофенол А для получения эпоксидных омол [ 10]. Основные. направления использования бензола представлены на рис. 1, из которого видно, что большая часть бензола расходуется на производство пластических масс, синтетических волокон и компонентов синтетического каучука. [c.51]

    Большинство каталитических процессов могут быть организованы как непрерывные, безотходные, малоэнергоемкие. Они отличаются высокими технико-экономическими показателями, обеспечивают высокий выход целевого продукта. Использование катализаторов позволяет интенсифицировать химико-технологические процессы, осуществлять превращения, которые не могут быть реализованы на практике без катализатора вследствие весьма высокой энергии активации, направлять процесс в нужную сторону, регулировать структуру и свойства производимых продуктов (например, стереоспецифические катализаторы в производстве синтетических каучуков и пластических масс). Особое значение имеет применение катализаторов в обратимых экзотермических процессах, в которых повышение температуры с целью ускорения реакции резко снижает равновесную степень превращения и делает реакцию термодинамически неразрешенной. В подобных процессах роль катгшизато-ров является первостепенной. [c.127]

    Этанол является одним из наиболее важных и крупномасштабных продуктов основного органического синтеза (мировое производство в 1980 году составило более 2,5 млн. т). Он используется в качестве растворителя в различных отраслях промышленности (лакокрасочной, фармацевтической, в производстве взрывчатых веществ, кино-, фото-, бытовой химии), антисептика, сырья для производства синтетического каучука, кормовых дрожжей, ацетальдегида и уксусной кислоты, хлороформа, диэтилового эфира, этилацетата, моно- и диэтиламинов и других органических продуктов компонента ракетных топлив и антифризов. Значительная часть производимого этанола расходуется на приготовление спиртных напитков, в парфюмерной промышленности. В табл. 12.4 представлена структура потребления этанола (США, 1970 год). [c.271]

    Изопреновый синтетический каучук СКИ-3 представляет полимер изопрена (2-л1етглл-бутадиена-1,3) [-СН2-С(СНз)=СН-СН2-]п. СКИ-3 имеет стереорегулярное строение. Макромолекулы его состоят преимуш ественно из звеньев структуры 1,4-цис с небольшим включением звеньев 1,4-транс и 3,4 и 1,2. [c.434]

    Обеспечение потребности энергонасыщенного парка моторной техники, ориентированного на применение нефтяных топлив,— одна из сложнейших задач отечественной и мировой энергетики. Здесь требуются значительные капитальные, эксплуатационные и трудовые затраты в разведку, добычу, транспорт и переработку нефти, создание распределительной сети нефтеснабжения. Основная доля этих затрат приходится на добычу и переработку нефти. По оценке Международного банка развития и реконструкции для обеспечения динамики роста добычи нефти в развивающихся странах в 1985, 1990 и 1995 гг. в 1068, 1253 и 1385 млн. т соответственно потребуется за период 1982—1992 гг. освоить 452,2 млрд. долл. капитальных вложений (в ценах 1982 г.). Капитальные вложения на разведку и разработку нефтяных месторождений в США в 1986 г. были на уровне 23,6 млрд. долл., а в нефтеперерабатывающую промышленность— 1,4 млрд. долл. Общие капитальные вложения в нефтеперерабатывающую промышленность капиталистических стран в 1986 г. превышали 10 млрд. долл. [29]. Исходя из структуры потребления нефтепродуктов, можно отметить, что более половины средств, вкладываемых в развитие нефтяной и нефтеперерабатывающей промышленности, приходится на моторные топлива, большая часть которых потребляется автомобильным транспортом. Особенно это характерно для США, где на его долю приходится около 84% общего расхода моторных топлив. В автомобилестроении США потребляется около 70% натурального и 59% синтетического каучуков, 15% —всей стали, 46% — ковкого чугуна, 21%—цинка, 62%—свинца, 40% — платины. Около 12,5 млн. чел., или каждый шестой, занятый в промышленности США, прямо или косвенно связан с автомобилестроением и автомобильным транспортом [30]. [c.37]

    В структуре себестоимости товарной продукции нефтеперерабатывающей и нефтехимической промышленности основное место занимают затраты на сырье, основные и вспомогательные материалы. Их уровень колеблется по подотраслям в пределах 56—90% и составляет в целом по отрасли 76,4%. Значительную долю (8,1%) в себестоимости продукции занимают энергетические затраты, в промышленности синтетического каучука, резинотехнической и асбестотехнической их уровень — более 10%. Использование сложного, дорогостоящего оборудования обусловливает высокую долю (6,5%) амортизационных отчислений. Значителен удельный вес заработной платы в себестоимости товарной продукции резинотехнической, резинообувной и асбестотехнической промышленности. [c.66]

    Существующие методики технологического расчета полимеризаторов для производства синтетических каучуков базируются большей частью на знании химической кинетики, которая иссле о ется в сосудах лабораторного масштаба. При этом, как правило, игнорируется влияш1е явлений тепломассопереноса и гидродинамики, па смотря на то, что в промышленных реакторах эти явлеш1я оказывают существенное влияние па наблюдаемую кинетику. Поэтому целесообразно развитие подхода, в рамках которого учитывается, что макрокш1етика процесса полимеризации в промышленном реакторе рассматривается как результат совместного влияния химической кинетики и кинетики переноса с учетом гидродинамических условий и структуры потоков. При этом параметрами математических моделей выступают физические и [c.78]


Смотреть страницы где упоминается термин Структура синтетического каучука: [c.122]    [c.212]    [c.353]    [c.143]    [c.355]    [c.310]    [c.432]    [c.21]   
Подготовка сырья для нефтехимии (1966) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Синтетические каучуки

Синтетические каучуки каучуки



© 2025 chem21.info Реклама на сайте