Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол инфракрасный спектр поглощения

    Для определения мономерного стирола по спектру поглощения инфракрасного излучения может быть использован спектрометр с призмой из каменной соли. Этот метод вполне точен для концентраций порядка 0,05%. [c.163]

    Для каждого соединения находят одну или несколько длин волн, при которых поглощение излучения значительно больше, чем у других веществ. Для определения содержания этилбензола в испытуемом продукте предварительно готовят набор стандартных растворов этилбензола в стироле с концентрациями от 0,2 до 1,0 вес. % и снимают инфракрасные спектры этих растворов в области длин волн 2782 и 2873 см-К [c.145]


    Найденные характеристические частоты поглощения дают возможность установить присутствие тех или иных группировок и видов связей. Обычно получается кривая спектра поглощения различного вида в зависимости от строения исследуемого полимера. Так, на рис. 87 приведены спектры поглощения стирола и полистирола, а на рис. 88 — спектры полиэтилена, полиизобутилена и каучука.Инфракрасная спектроскопия была применена для исследования полимеризации стирола, изучения полиизо-бутилена и других видов синтетических каучуков. Нри ее помощи было установлено наличие кетонных групп в молекуле поливинилацетата, наличие связей в положении 1,4 и 1,2 у полимеров бутадиена и др. [c.163]

    В. М. Чулановский, Я. П. Ленкин, Изв. АН СССР, серия физич., 9, 206 (1945). Изучение полимеризации стирола по спектрам поглощения в близкой инфракрасной области. [c.228]

    ИЛИ ПО спектрам поглощения в инфракрасной области. Последний способ в настоящее время является общепринятым и имеет то преимущество, что позволяет определять также соотнощение цис- и транс-конфигураций в 1,4-структурах. В бутадиеновых полимерах доля структур I, II, VI и VII изменяется в зависимости от температуры и способа полимеризации. Так, полибутадиен, полученный методом эмульсионной полимеризации, содержит 18—23% звеньев в положении 1,2, в то время как полимер, полученный с применением натрия или калия в качестве катализатора, содержит 45—80% звеньев в положении 1,2. Полибутадиен, полученный в присутствии калия, имеет на 15—20% звеньев в положении 1,2 меньше, чем полученный с натрием [2]. Отнощение числа звеньев в положении 1,2 к числу звеньев в положении 1,4 незначительно уменьшается в полимерах, полученных при пониженных температурах полимеризации. Однако соотношение количества звеньев со структурами транс-1 А и цис-1Л существенно зависит от температуры полимеризации [3—5]. Табл. 14 содержит результаты, полученные для полибутадиена и сополимеров бутадиена со стиролом, полученных методом эмульсионной полимеризации. С понижением температуры полимеризации для звеньев, находящихся в положении 1,4 как в полибутадиене, так и в сополимерах бутадиена со стиролом, наблюдается преимущественно транс-конфигурация. При достаточно низких температурах полимеризации получается исключительно транс-конфигурация. Медалиа и Фридман [6] и Ричардсон [7] детально изучали влияние температуры до 250— 270° на процессы полимеризации в блоке и в растворе. Установлено, что доля звеньев цис-конфигурации возрастает с ростом температуры в соответствии с закономерностью, наблюдавшейся при пониженных температурах, и достигает 36—40%. транс-Структуры составляют приблизительно такую же долю, остальные звенья (около 20%) относятся к положению 1,2. [c.173]


    Ультрафиолетовый снектр поглощения реагента Гриньяра, полученного из бромистого циннамила, как и дициннамилмагния, качественно подобен спектру соединения, имеющего хромофор стирола (СбН5СН=СН—) [239]. Аналогично инфракрасный спектр гриньяровских реагентов, полученных из бромистых а- и у-метилаллилов, подтверждает первичную структуру для бутенильных групп этих магнийорганических производных [240, 241]. [c.438]

    Ковач [1379] дилатометрически изучал изменение объема (У) во времени при различных температурах для сополимера стирола с полиэфиром малеиновой кислоты. Автор произвел расчет полидисперсности структурных элементов сетки и показал, что самые короткие участки цепей между узлами содержат от 10 до 16 атомов углерода. Неде [1383], Эльм и Молин [1384] и другие [1385—1387] описали инфракрасные и ультрафиолетовые спектры поглощения алкидных смол. [c.104]

    Сополимеры стирола. Инфракрасная спектроскопия применяется также для исследования масляно-стирольных сополимеров. Ярко выраженная полоса карбонильной группы сложного эфира в области длины волны 5,8 мк позволила определить содержание масла, так как полпстирол в этой области спектра сравнительно прозрачен. Стирол можно количественно определить по полосам поглощения в области длин волн 13,2 и 14,3 мк. Полоса в области 5,8 мк была использована для измерения содержания масла ° в сополимерах, полученных в эмульсиях стирола с льняным маслом установлено, что необработанное масло, е содержащее кислоты с сопряженными связями, не образует полимеров сополимеризация происходит лишь в маслах, содержанщх сопряженные связи. С помощью инфракрасной спектроскопии было легко обнаружено образование сополимеров тунгового масла со стиролом .  [c.602]

    Модифицирование алкида стиролом может быть установлено по резко очерченной полосе поглощения в области длины волны 6—7 мк и пику, образующемуся при длине волны 13,2 мк. На процесс конденсации алкидной смолы могут влиять содержащиеся в пептаэритрите полипентаэритриты. Для определения их содержания разработан метод инфракрасной спектроскопии- , основанный на образовании полосы спектра в области длины волны 9 мк, соответствующей простой эфирной связи, не наблюдаемой у мономера. В работе приведена обширная серия спектров полимеров и смолообразных материалов. [c.603]

    Поглощение излучения растворами, содержащими макромолекулы или низкомолекулярные растворенные вещества, можно исследовать в трех участках электромагнитного спектра, соответствующих различным типам поглощения излучаемой энергии системой. В области видимого и ультрафиолетового (УФ) света излучение вызывает возбуждение электронов. Органические молекулы поглощают видимый свет лишь в том случае, если они содержат большие резонирующие системы, а макромолекулы этого типа в растворе не изучались. Однако в некоторых случаях сильное поглощение видимого света обусловлено образованием комплексов ионов переходных металлов с макромолекулами, как, например, при исследовании гемоглобина и других белков, содержащих железо-порфириновый комплекс, связанный с макромолекулой [488]. Узко специфические проблемы, касающиеся спектроскопии таких материалов, рассматриваться не будут, и наше обсуждение будет ограничено нрименением УФ-спектроскопии, которая находит широкое применение при исследовании макромолекул. Спектральное поглощение в инфракрасной (ИК) области возникает в результате переходов между вращательными и колебательными уровнями. Как УФ-, так и ИК-спектроско-пия являются мощными средствами анализа полимеров. В качестве примера можно привести использование УФ-спектров для аналрхза сополимеров стирола или винилииридина с неароматическими сомономерами, а также применение ИК-спектроскопии для исследования 1Л-цис-, [c.172]

    Поглощение излучения растворами, содержащими макромолекулы или низкомолекулярные растворенные вещества, можно исследовать в трех участках электромагнитного спектра, соответствующих различным типам поглощения излучаемой энергии системой. В области видимого и ультрафиолетового (УФ) света излучение вызывает возбуждение электронов. Органические молекулы поглощают видимый свет лишь в том случае, если они содержат большие резонирующие системы, а макромолекулы этого типа в растворе не изучались. Однако в некоторых случаях сильное поглощение видимого света обусловлено образованием комплексов ионов переходных металлов с макромолекулами, как, например, при исследовании гемоглобина и других белков, содержащих железо-порфириновый комплекс, связанный с макромолекулой [488]. Узко специфические проблемы, касающиеся спектроскопии таких материалов, рассматриваться не будут, и наше обсуждение будет ограничено применением УФ-спектроскопии, которая находит широкое применение при исследовании макромолекул. Спектральное поглощение в инфракрасной (ПК) области возникает в результате переходов между вращательными и колебательными уровнями. Как УФ-, так и ИК-спектроско-пия являются мощными средствами анализа полимеров. В качестве примера можно привести использование УФ-спектров для анализа сополимеров стирола или винилпиридина с неароматическими сомономерами, а также применение ИК-снектроскопии для исследования 1,А-цис-, 1,А-транс- или 1,2-присоединения в полибутадиене. Такой анализ основан на предположении, что вклады, вносимые мономерными остатками в измеряемую оптическую плотность, аддитивны. Для большого числа случаев это предполон<ение, но-видимому, является очень хорошим приближением. Однако следует заметить, что такие спектроскопические исследования в целом не зависят от растворимости образца и поэтому выходят за рамки нашего обсуждения, предметом которого УФ- и ИК-спектры являются лишь постольку, поскольку они специфически характеризуют растворенные молекулы. Совершенно иным является положение для поглощения в радиочастотной области, вызванного квантованными переходами в ориентации магнитных моментов некоторых атомных ядер во внешнем магнитном ноле. Разрешение, достигаемое нри исс. те-довании методом ядерного магнитного резонанса (ЯМР), значительно выше для жидких образцов, чем для твердых. Следовательно, изучение спектров ЯМР растворов макромолекул необходимо для выяснения таких данных о полимере, которые нельзя получить для твердых образцов. [c.172]



Химия высокомолекулярных соединений (1950) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасные спектры поглощени



© 2025 chem21.info Реклама на сайте