Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кольцевые органелл

    Характерной особенностью клеток эукариот является присутствие митохондрий — сложных образований с двойной мембраной, близких по величине к бактериям (рис. 1-3 и 1-4). Внутренняя мембрана митохондрий образует многочисленные глубокие складки, так называемые кристы (гребневидные выросты). Наружная мембрана проницаема для соединений с небольшим молекулярным весом, но проникновение веществ во внутреннее пространство митохондрий (в матрикс) и выход из него находятся под строгим контролем внутренней мембраны. Хотя отдельные окислительные реакции протекают в ЭР, все же основные процессы, связанные с образованием и накоплением энергии, у аэробных организмов локализованы в митохондриях именно в этих органеллах происходит утилизация основной части кислорода. В свое время многие биохимики были крайне удивлены, обнаружив в митохондриях кольцевую ДНК с небольшим молекулярным весом. Далее оказалось, что ми- [c.33]


    Прокариоты не имеют окруженного мембраной ядра. ДНК в виде замкнутой в кольцо молекулы свободно располагается в цитоплазме. Эта бактериальная хромосома содержит всю необходимую для размножения клетки информацию. Кроме того, в прокариотической клетке могут содержаться очень небольшие кольцевые молекулы ДНК-плазмиды без них, однако, клетка может обойтись. Прокариотическая клетка органелл не содержит подразделение клетки на компартменты менее выражено, чем у эукариот. Рибосомы меньше (70S). У прокариот рибосомы, ферменты белкового синтеза и состав клеточной стенки имеют ряд особенностей, благодаря которым на клетку могут специфически [c.11]

    Для протекания обоих процессов у эукариот необходимы специальные органеллы, а именно митохондрии — для дыхания и хлоропласты — для фотосинтеза митохондрии и хлоропласты сходны с прокариотическими организмами тем, что обладают кольцевой ДНК и прокариотическим типом белоксинтезирующей системы. [c.345]

    Геномы органелл представляют собой кольцевые молекулы ДНК [c.282]

    Почти все охарактеризованные к настоящему времени геномы органелл представляют собой одну молекулу ДНК с уникальной последовательностью нуклеотидных оснований. Обычно ее можно выделить в виде кольцевой молекулы, хотя иногда при вьщелении возникают столь частые разрывы, что основная часть материала приобретает вид линейных фрагментов ДНК. Исключение составляют инфузории, у которых митохондриальная ДНК представлена линейной молекулой. Как правило, в каждой митохондрии содержится несколько копий ее генома. Поскольку в клетке имеется множество митохондрий, то на одну клетку может приходиться большое число геномов данной органеллы. Таким образом, несмотря на то что сам по себе геном органеллы уникален, он представляет собой повторяющуюся последовательность, относительно сходную с любой неповторяющейся ядерной последовательностью. [c.282]

    Не вся ДНК эукариотических клеток находится в ядрах клеток. Митохондрии и недифференцированные хлоропласты растений, так называемые пластиды, представляют собой самореплицирующиеся органеллы и содержат собственные кольцевые молекулы ДНК. Эти молекулы очень невелики и кодируют ограниченное количество информации, необходимой для осуществления органеллами их функций. Так же как и хромосомы прокариот, они не связаны с гистонами и образуют внутри органелл нуклеоиды. [c.120]

    Митохондрии обеспечивают дыхание клеток растений, животных и эукариотических микроорганизмов. Подобно хлоропластам, это самовоспроизводящиеся полуавтономные органеллы клетки, содержащие кольцевые молекулы ДНК (рис. 10.6) с различной контурной длиной. ДНК митохондрий по нуклеотидному составу и вследствие этого по плотности отличается от ДНК ядра (табл. 10.3). Митохондрии имеют собственный аппарат белкового синте- [c.236]


    В организме человека митохондрии обеспечивают дыхание всех клеток, за исключением эритроцитов. Это само-воспроизводящиеся полуавтономные органеллы содержат кольцевые моле- [c.99]

    Палочковидные органеллы диаметром около 1 мкм и длиной около 7 мкм, носящие название митохондрии, имеют двойную мембрану. Пространство, ограниченное внутренней мембраной, называют митохондриальным матриксом. Он содержит рибосомы и митохондриальную кольцевую ДНК, специфические РНК, соли кальция и магния. В митохондриях за счет окислительно-восстановительных процессов вырабатывается энергия, которая накапливается в виде молекул аденозинтрифосфата (АТФ). Количество [c.16]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Кроме ДНК, обнаруживаемой в ядре эукариотических клеток, в цитоплазме также присутствует очень небольшое количество ДНК, отличающейся от ядерной по нуклеотидному составу эта цитоплазматическая ДНК локализована в митохондриях. Хлоропласты фотосинтезирующих клеток также содержат ДНК. Обьлно в покоящихся соматических клетках ДНК этих органелл составляет менее 0,1% всей клеточной ДНК, однако в оплодотворенных и делящихся яйцеклетках, где число митохондрий сильно увеличено, количество митохондриальной ДНК значительно выше. Митохондриальные ДНК (мДНК)-это двухцепочечные кольцевые молекулы очень малого по сравнению с молекулами ДНК ядерной хромосомы размера. В животных клетках мДНК имеет мол. массу всего 10 -10 . Молекулы хлоро-пластной ДНК значительно больше ДНК митохондрий. ДНК обеих этих органелл не связана с гистонами. [c.876]

    Эндосимбиотическая гипотеза. Клеточные органеллы эукариот имеют много фундаментальных общих черт с прокариотическими клетками. Они содержат кольцевые молекулы ДНК, их рибосомы относятся к типу 70S, а мембраны содержат компоненты электрон-транспортной цепи (флавины, хиноны, Fe-S-содержащие белки, цитохромы) и выполняют функцию дыхательного или фотосинтетического преобразования энергии. Согласно симбиотической гипотезе, митохондрии происходят от бесцветных аэробных бактерий, а хлоропласты-от цианобактерий, сделавшихся эндосимбионтами каких-то примитивных эукариотических клеток. В дальнейшем должна была произойти очень большая специализация функция регенерации АТР была передана клеточным органел-лам. Наружная мембрана эукариотической клетки не содержит компонентов электрон-транспортной цепи, С другой стороны, клеточные органеллы тоже не самостоятельны они, правда, обладают собственными молекулами ДНК, однако значительная часть информации, необходимой для синтеза их белков, находится в клеточном ядре. Примером может служить рибулозобисфосфат-карбоксилаза-ключевоп фермент ав-тотрофной фиксации Oj у зеленых растений. Она состоит из 8 боль- [c.26]

    Нативные молекулы ДНК очень велики и при экстракции из клеток обычно разрываются в результате физических или ферментативных воздействий. Мезелсон и Сталь в своих экспериментах по репликации ДНК Е. соН имели дело со сравнительно небольшими фрагментами ДНК, и полученные ими результаты относятся только к состоянию ДНК, предшествовавшему репликации и после нее. Полная репликация хромосомы Е. соН впервые наблюдалась Джоном Кейрнсом. Он разработал метод очень мягкого разрушения клеток Е. соИ. В результате Кейрнсу удалось вьщелить интактные хромосомы Е. соН и пометить их радиоактивным Н-тимидином. Меченые хромосомы аккуратно переносили из раствора на твердую поверхность, которая затем покрывалась в темноте фотографической эмульсией и в течение нескольких недель экспонировалась. В это время электроны, испускаемые радиоактивной ДНК, вызывали образование зерен серебра в фотоэмульсии вдоль молекул ДНК. Последующая обработка эмульсии дает радиоавтограф хромосомы, на котором цепочка зерен серебра отслеживает конформацию молекулы ДНК. Применение метода радиоавтографии привело прежде всего к установлению того факта, что ДНК Е. соН имеет кольцевую форму (рис. 4.22). Впоследствии было показано, что такую же форму имеет ДНК всех прокариотических организмов, а также вирусов и органелл эукариотических организмов. [c.120]


    Митохондрии и хлоропласты никогда не возникают de novo, они всегда образуются путем деления уже сушествующих органелл. Как показывают наблюдения над живыми клетками, митохондрии не только делятся, но могут и сливаться друг с другом. Однако в среднем каждая органелла должна удвоить свою массу и затем разделиться пополам один раз за одну клеточную генерацию. Электронные микрофотографии дают основание полагать, что деление митохондрий начинается с образования кольцевой бороздки на внутренней мембране, подобно тому как это происходит при делении многих бактериальных клеток (рис. 7-65 и 7-66) таким образом, деление митохондрий - это, по-видимому, контролируемый процесс, а не случайное расшепление надвое. [c.486]

    Геном хлоропластов не был первым полностью расшифрованным геномом органелл. Первым оказался митохондриальный геном человека относительно малые размеры сделали его особенно привлекательным объектом для молекулярных генетиков, вооруженных новейшей методикой секвенирования ДНК (см. разд. 4.6.6), и в 1981 г. была опубликована полная последовательность этого генома, состоящая из 16569 пар нуклеотидов. Сопоставляя ее с известными нуклеотидными последовательностями тРНК и частичными аминокислотными последовательностями белков, кодируемых генами митохондрий, удалось определить на кольцевой молекуле ДНК локализацию всех этих генов (рис. 7-70). По сравнению с геномами ядра, хлоропластов и бактерий митохондриальный геном человека имеет несколько поразительных особенностей  [c.490]

    Высшие (эукариотические) клетки в 10-100 раз крупнее, чем бактериальные (прокариотические). Избирательно проницаемая мембрана (состоящая из множества липидных молекул), регулирует перемещение различных веществ, включая воду, в клетку и из клетки. Мембрану бактериальной клетки окружает довольно жесткая клеточная стенка. Растительные клетки также имеют внешнюю грубую клеточную стенку (на рисунке не показана). В состав высших клеток входит окруженное мембраной ядро, содержащее несколько хромосом (длинных линейных молекул ДНК). Бактериальные клетки имеют только одну кольцевую хромосому. В высших клетках РНК-копии генов производятся в ядре (процесс транскрипции) и перемещаются в цитоплазму после преобразования (процессинга). (См. рис. 4.4 и 4.5). Затем в цитоплазме эти молекулы информационной мРНК транслируются в белок с помощью специальной молекулярной машины, или органеллы, которая называется рибосомой (см. приложение). [c.42]

    Как уже говорилось выше, в процессе оплодотворения человека участвуют две клетки яйцеклетка и сперматозоид. Яйцеклетка — это крупная клетка с большим объемом цитоплазмы, в которой с помощью электронного микроскопа обнаруживают все органеллы, в том числе и множество митохондрий. Сперматозоид же, хотя и имеет упакованные специальным образом в области шейки четыре митохондрии, утрачивает их вскоре после того, как проникает внутрь яйцеклетки, поскольку его хвостовая часть быстро растворяется. Практически, в процесе оплодотворения принимает участие только ядро сперматозоида. Таким образом, диплоидная зигота, дающая начало новому организму, несет митохондрии, полученные только от яйцеклетки, т.е. все митохондрии во всех клетках любого индивида имеют материнское происхождение. Следовательно, генетический материал, локализованный в кольцевых молекулах митохондриальной ДНК, наследуется по материнской линии. [c.99]

    Гены хлоропластов наиболее изучены у растений и зеленых водорослей, у которых эти органеллы очень сходны. Геном хлоропласта представляет собой кольцевую молекулу ДШС, в настоящее время определена его полная нуклеотидная последовательность у табака и одного печеночника. Полученные данные говорят о том, что гены хлоропластов этих очень отдаленно родственных высших растений практически идентичны. Помимо четырех рибосомных РШС эти геномы кодируют около 20 рибосомных белков, некоторые субьединицы хлоропластной РНК-полимеразы, несколько белков, входящих в состав фотосистем I и П, субьединицы АТР-синтетазы, части ферментных комплексов электронтранспортной цепи, одну из двух субьединиц рибулозобисфосфат-карбоксилазы и 30 тРНЬС (рис. 7-69). Кроме того, последовательность ДНК, невидимому, кодирует еще по меньшей мере 40 белков с невыясненной функцией. Удивительно, что все известные белки, кодируемые в хлоропластах, входят в состав больших ферментных комплексов, которые содержат также одну или несколько субьединиц, кодируемых ядерным геномом. Возможные причины этого будут рассмотрены позже (разд. 7.5.17). [c.489]

    Согласно теории эндосимбиоза (Margulis, 1970 1981), митохондрии эукариот и хлоропласты растений и зеленых жгутиковых произошли от свободноживущих прокариот, заселивших примитивные эукариотические клетки и оставшихся в цитоплазме в качестве постоянных самовоопроизводящихся симбионтов. Считается, что митохондрии происходят от аэробных бактерий, а хлоропласты — от синезеленых водорослей. Основанием для этой теории служит структурное и биохимическое сходство между этими органеллами и соответствующими формами современных прокариот. Митохондрии содержат кольцевые молекулы двухцепочечной ДНК, сходной с ДНК бактерий. Хлоропласты, так же как и клетки синезеленых водорослей, окружены мембраной, содержат фотосинтетический аппарат и, помимо ДНК, тельца, похожие на рибосомы, Кроме того, синезеленые водоросли часто вступают в симбиоз с различными эукариотическими организмами. [c.194]


Смотреть страницы где упоминается термин Кольцевые органелл: [c.487]    [c.489]    [c.18]    [c.459]    [c.487]    [c.490]    [c.18]   
Гены (1987) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Кольцевой ток

Органеллы



© 2025 chem21.info Реклама на сайте