Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол выделение ацетилена

    Целевым продуктом термоокислительного пиролиза является ацетилен. После выделения ацетилена отходящим газом служит синтез-газ, содержащий 58—60% водорода, 26—28% окиси углерода, а также 4—6% непрореагировавшего метана. На 1 т продуцируемого ацетилена получают до 10 ООО м синтез-газа, используемого для получения аммиака и метанола. [c.71]

    В результате водной абсорбции удавалось получить 99%-ный ацетилен с содержанием наиболее взрывоопасного компонента — диацетилена не более 1 г/ж . Способ выделения ацетилена водой оказался экономически нецелесообразным и технически очень сложным и дальнейшего промышленного применения не получил. Следует указать, что на отдельных опытных установках этот способ применялся с некоторыми изменениями, в частности высшие ацетиленовые углеводороды улавливались селективными растворителями. Отдельные узлы описанной схемы были использованы при разработке схем с метанолом. [c.228]


    Технологические параметры выделения ацетилена метанолом. Растворимость ацетилена в метаноле, как уже указывалось, при пониженной температуре очень велика в 1000 кг метанола при —70° С и I ат растворяется 300 ацетилена. Однако имеются данные, что сверхнасыщенные ацетиленом растворы метанола взрывоопасны, поэтому насыщение не должно превышать 350 л ацетилена на 1000 кг метанола. Вследствие такой большой растворимости ацетилена коэффициент. его извлечения метанолом может быть очень высок. Правильный выбор температуры позволяет резко сократить потери растворителя с отходящим газом. Так, например, если парциальное давление метанола при —70° С составляет 0,1 мм рт. ст., то в 1 л газа после выделения ацетилена содержится 0,13 г метанола. Однако применение относительно низких температур связано с высокими затратами энергии. [c.266]

    Еще один недостаток процессов получения ацетилена из углеводородов является общим для очень многих нефтехимических процессов и в известной степени для процессов нефтепереработки. Ацетилен — не единственный продукт, получаемый этим способом, как это имеет место в случае карбидного ацетилена (если не считать пушонку). Целевыми продуктами многих процессов являются смеси ацетилена и этилена. Во всех процессах получается избыток водорода, иногда чистого, иногда в смеси с СО. Эти продукты также не транспортабельны, и если стремиться наиболее выгодно их использовать, они должны найти применение на месте не в качестве горючего, а для химического синтеза. Этилен имеет пшрокое применение. Водород необходим для синтеза аммиака особенно там, где имеется азот, являющийся побочным продуктом выделения из воздуха кислорода, который используется в процессах окислительного пиролиза. Окись углерода можно использовать для получения дополнительных количеств водорода из водяного газа, для синтеза метанола нли других целей. Следовательно, такие пути использования побочных продуктов более выгодны, чем их применение в качестве горючего на том же заводе, и они являются важным фактором повышения экономичности заводов по производству ацетилена на основе углеводородов. Стоимость производимого ацетилена не может быть адекватно определена без учета этих факторов. Еще несколько лет назад структура цен на возможное сырье исключала все виды сырья, кроме сырой нефти и мазута, который не очень привлекателен с технической точки зрения, а также природного газа. Заводы по производству ацетилена из углеводородов, пущенные в 50-х годах, в основном были основаны на использовании природного газа и располагались в районах, где природный газ имелся и был, по возможности, дешевым, [c.435]


    Газ пиролиза под давлением около 4 кгс/см2 (0,39 МН/м ), очищенный от сажи, поступает в скруббер 3 для поглощения высших гомологов ацетилена и ароматических углеводородов. Скруббер орошается метанолом, подаваемым в небольшом количестве. Удаление наименее стабильных углеводородов перед компримированием предотвращает образование полимеров в системе компрессии. Насыщенный абсорбент из скруббера 3 поступает на выделение высших гомологов ацетилена в систему отпарки 7. Г аз из абсорбера 3 сжимается компрессором 2а jxo 12 кгс/см (1,18 МН/м ), после чего направляется в абсорбер 4, орошаемый метанолом с температурой —80°С. В абсорбере 4 поглощаются ацетилен, двуокись углерода и некоторое количество малорастворимых в метаноле газов (окись углерода, метан, этилен). Тепло абсорбции отводится [c.78]

    Если селективность растворителя по отношению к системе ацетилен—двуокись углерода меньше 3—5, более выгодна предварительная очистка пирогаза от двуокиси углерода. В качестве примера можно привести схему выделения ацетилена из пирогаза с помощью метанола при низкой температуре. [c.376]

    Как видно из приведенных данных по растворимости в метаноле, компоненты пирогаза также делятся на три группы, аналогичные описанным ранее. Однако селективность метанола по отношению к системе ацетилен — двуокись углерода значительно меньше селективности Ы-метилпирролидона или диметилформамида. Поэтому при выделении ацетилена с помощью метанола считают целесообразным предварительно очищать пирогаз от двуокиси углерода. [c.377]

    Выделение ацетилена и этилена из газов, выходящих из печи, производят аналогично тому, как это осуществляется для газов от частичного сжигания метана. Очищенный ацетилен имеет концентрацию 99,5%, этилен—99,9%. Остаточный газ содержит также большие количества таких ценных продуктов, как бензол, пропилен, дивинил, которые могут быть выделены и использованы остающийся после этого газ может быть направлен на синтез аммиака или метанола. [c.70]

    Разработан также новый промышленный метод выделения ацетилена с применением в качестве растворителя метанола > > . Этот растворитель имеет ряд преимуществ, заключаю-щихся в его низкой стоимости, устойчивости и оптимальной селективности. Как видно из рис. 12, растворимость водорода и окиси углерода в метаноле настолько низка, что ею можно практически пренебречь по сравнению с растворимостью ацетилена в то же время двуокись углерода имеет примерно такую же растворимость, что и ацетилен ввиду этого требуется химическая обработка для освобождения ацетилена от двуокиси углерода. Растворимость ацетилена в метаноле быстро возрастает с понижением температуры. Так, при —70 °С 1 т метанола растворяет при атмосферном давлении 300 нм ацетилена. Следует отметить, что в целях безопасности объем ацетилена, растворенного в метаноле, не должен превышать 350 йм Ш. [c.75]

    Другим технически важным свойством ацетилена является его раст1юримость, значительно более высокая, чем у других углеводородных газов. Так, в 1 объеме воды при 20 °С растворяется около 1 объема ацетилена, а при 60 °С растворяется 0,37 объема. Растворимость снижается в водпелх растворах солей и Са(0Н)2. Значительно выше растворимость ацетилена в органических жидкостях при 20 °С и атмосферном давлении она составляет (в объемах щетилеиа на 1 объем растворителя) в метаноле 11,2, в ацетоне 23, в диметилформамиде 32, в N-метилпирролидоне 37. Растворимость ацетилена имеет важное значение при его получении и выделении з смесей с другими газами, а также в ацетиленовых балл )нах, где для повышения их емкости по ацетилену и снижения авления используют растворитель (ацетон). [c.77]

    Для выделения и очистки ацетилена используют его свойство лучше, чем другие компоненты реакционных газов, растворяться в некоторых агентах в метаноле или ацетоне при охлаждении до —70 "С и особенно в диметилформамиде и К-метилпирролидоне при комнатной температуре. Обычно газ вначале освобождают от сажи, затем от лучше растворимых ароматических соединений и гомологов ацетилена (форабсорбция), после чего поглощают ацетилен. Очистку его ведут путем ступенчатой десорбции. [c.84]

    Проблема гидрирования или выделения сопутствует и образующейся при пиролизе бензинов метилацетилен-алленовой фракции (МАФ). Эта фракция, подобно ацетилену, также может быть использована в процессах газопламенной обработки металлов, однако больший интерес представляет применение компонентов фракции в качестве сырья для малотоннажных синтезов ценных продуктов (например, полиаллена, метилизопропенилового эфира). Так, при производстве метилизопропенилового эфира из метанола и МАФ может быть достигнут значительный экономический эффект по сравнению с технологией, использующей в качестве исходного сырья метанол и ацетон. И, в первую очередь, он обусловливается тем, что специально производимый продукт—ацетон в данном случае, заменяется попутно образующимся продуктом — МАФ. [c.369]

    Ацетилен является в настоящее время одним из важнейших сырьевых веществ в промышленности органического синтеза. Наиболее выгодно получать ацетилен из углеводородных газов (электрокрекинг метана и другие способы). При производстве ацетилена путем переработки углеводородных газов его концентрация в получающихся газообразных продуктах (водород, углеводороды и др.) относительно невелика. В то же время ацетилен в отличие от предельных углеводородов хорошо растворяется в воде. Он растворяется в воде примерно в 30 раз лучше, чем метан. Ацетилен очень хорошо растворяется также в диметилформамиде, ацетоне, метаноле, бутирол-актоне и других растворителях. Эти свойства ацетилена и используются сейчас для его выделения из газовых смесей. [c.62]


    Выбор способа очистки диацетилена зависит от метода получения и цели его использования. Диацетилен, образующийся при пиролизе природного газа, достаточно хорошо очищается с помощью низкотемпературной перегонки. Этим способом очистки пользуются как в лабораторной, так и промышленной практике. Очищенный таким образом диацетилен обладает степенью-чистоты, требуемой при физико-химических исследованиях [Ю] Этим же способом пользуется в промышленности для выделения диацетилена и винилацетилена из смеси их с ацетиленом 150]. ]Метод селективного растворения для выделения ацетилена, его-гомологов и диацетилена из газовой смеси [50, 62, 63] в настоящее время широко применяется на заводах. В качестве растворителей для этого используются метанол, диметилформамид, N-ме-тилпирролидон, ацетон, керосиновые фракции нефти и др. При этом, однако, необходимо учитывать возможность взаимодействия диацетилена с растворителем, как это имеет место в случае К-метилпирролидона-2 [382—384]. При пропускании диацетилена через N метилпирролидон-2 при охлаждении образуется устойчивый кристаллический комплекс, в котором молекулярное-отношение диацетилена к метилпцрролидону равно 1 1. Этот комплекс при нагревании до 30 50° С распадается с образованием диацетилена, что было использовано для выделения его в чистом виде из смеси с моноацетиленами. Так, исходная газовая смесь, полученная при электродуговом крекинге углеводородов, содержала ацетилена — 38,4 мол. %, метилацетилена — 16,4 мол. % и диацетилена — 45,1 мол.%. После пропускания этой смеси через К-метилпирролидоп-2 при 0° С до образования кристаллов отходящий газ имел следующий состав ацетилена — 55,7 мол.%, метилацетилена —42,2 мол.7о и диацетилена — 2,1 од.7о- При нагревании кристаллического комплекса до 40" С образуется газ, содержащий 96,1 мол. % диацетилена. Повторная обработка дает совершенно чистый диацетилен. [c.57]

    В цикле очистки ацетиленсодержащих газов от высших ацетиленовых углеводородов возможно применение как метанола, так и других растворителей (например, керосина), что определяется выбранной схемой разделения ацетиленсодержащих газов. В случае применения метанола (на стадии очистки от ацетиленовых углеводородов и на стадии выделения и концентрирования ацетилена) не удается полностью очистить газ от метилацетилена. Для этой цели ацетилен-сырец подвергают дополнительной обработке, например активированным углем. При такой системе очистки двуокись углерода целесообразно выделять в конечной стадии процесса ко щентрирования. [c.254]

    Имеются и другие схемы выделения ацетилена метанолом, отличающиеся в основном положением стадии выделения двуокиси углерода (может быть в начале процесса) и схемой регенерации холода (так, в частности, для первоначального охлаждения газа пиролиза используют фракции СН и СО + На с установки газоразде-ления). Существует схема, по которой сначала удаляют высшие ацетиленовые углеводороды, а затем ацетилен при плюсовой температуре и 15 ат. Широкого распространения процесс выделения ацетилена метанолом не получил, он применяется в промышленном масштабе только на установках фирмы Monte atini. [c.268]

    Газ после охлаждения в колонне 5 (рис. V.54) собирают в газгольдер 6 о SsHMaroT до 13 ат. Очистка от Oj производится в колонне 8 с помощью раствора аммиака. В теплообменниках 11, 12 и 14 газ последовательно охлаждают в противотоке холодного газа из десорбера 18 ъ присутствии небольшого количества метанола. При этом удаляются высшие ацетиленовые углеводороды, отгонка которых из раствора в метаноле проводится в десорберах 13 ж 15. Абсорбция ацетилена метанолом производится в башне 16 при —70° С, а его выделение при 60° С — в десорбере 17. Остаточный газ фракционируют при давленип 13 ат в дистилляционной колонне JS, получая этилен, метан, направляемый на вход печи, и смесь СО Н , которую используют для синтеза метанола. В Японии [54] также предлагали использовать метанол в качестве растворителя. Неочищенный газ под давлением 18 ат промывали метанолом, подаваемым со скоростью 26 см м газа. Отгонку абсорбированных газов проводили под давлением 0,5 ат при 20° С. Для удаления СО2, содержание которого в выделявшемся газе составляло 10,7%, газ отмывали 20% раствором этаноламина в воде. Получаемый ацетилен имел чистоту 99,7%. [c.425]

    Чистота выделенного ацетилена превышает 99%. Однако-в литературе имеются указания, что ацетилен должен дополнительно освобождаться от двуокиси лтлерода аммиаком. Б качестве абсорбента вместо метанола может использоваться ацетон. [c.79]


Смотреть страницы где упоминается термин Метанол выделение ацетилена: [c.88]    [c.112]    [c.75]    [c.369]    [c.92]    [c.268]    [c.74]   
Основы технологии синтеза каучуков Изд 2 (1964) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен выделение



© 2025 chem21.info Реклама на сайте