Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция промышленные. методы

    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]


    Отбор проб воздуха для определения в нем концентрации химических соединений производится чаше всего аспирационным методом, основанным на протягивании известного объема воздуха через поглотительную систему. Соединения улавливаются жидкими или твердыми поглотителями. Аспирация анализируемого воздуха через поглотительные среды производится электроаспираторами ( Малыш , АЭРА, ПРУ-4, МК-1, УЛМК-3, ЛК-1 и др.) и реже вакуум-насосами. Так как приборы с жидким поглотителем основаны на принципе абсорбции, то степень улавливания соединений в них будет зависеть от начальной концентрации соединений в газе. С уменьшением концентрации в отбираемой пробе снижается степень улавливания и увеличивается разница между полученным и истинным значениями. В табл. 2.1 приведены сравнительные данные для жидкостных поглотительных приборов, наиболее часто используемых в промышленной практике. При концентрации химических соединений в газах (например, KF, НС ) > 1000 мг/м степень улавливания в указанных поглотителях составляет 97— 99 %. В этом случае ошибка определения не превышает 0,1—3 %, что вполне допустимо. Применение поглотителей для отбора проб с концентрацией соединений 100 мг/м вызывает сомнение. В этом случае более надежен отбор проб в вакуумированные сосуды (стеклянные, металлические) емкостью 1,5—5 л, заполненные на 0,05— 0,1 жидким поглотителем. Этот метод отбора проб основан на явлении адсорбции химических соединений на стенках сосуда. В результате получасового промывания стенок имеющимся в сосуде жидким поглотителем соединения из газа количественно переходят в жидкий поглотитель. Для повышения чувствительности метода [c.23]

    Различие в реакционной способности олефинов по отношению к серной кислоте использовано для разработки промышленных методов избирательной абсорбции непредельных углеводородов из газов крекинга нефти [57]. [c.16]

    Промышленные методы абсорбции. Из основных уравнений абсорбции видно, что количество абсорбированного вещества прямо пропорционально понерхности контакта фаз, и, следовательно, абсорбционная [c.484]

    Гидратация этилена осуществляется двумя методами при помощи серной кислоты (сернокислотная гидратация) и непосредственным взаимодействием этилена с водяным паром в присутствии катализаторов (парофазная каталитическая гидратация). Сернокислотный способ, открытый А. М. Бутлеровым, получил промышленное осуществление только в послевоенные годы. Он состоит из следующих четырех стадий 1) абсорбция этилена серной кислотой с образованием сернокислых эфиров 2) гидролиз эфиров 3) выделение спирта и его ректификация 4) концентрирование серной кислоты. Взаимодействие между этиленом и серной кислотой состоит из двух этапов первый — физическое растворение этилена в серной кислоте и второй — гомогенное взаимодействие обоих компонентов с образованием алкилсульфатов по уравнениям  [c.169]


    Характерно также, что в США нет типовых газофракционирующих установок. Каждая установка проектируется и строится с учетом определенных газовых потоков. Отбор целевых компонентов Сз—С весьма высок и составляет 94—99% от потенциала. На многих НПЗ наряду с фракциями Сз—С5 извлекают этан-этиленовую фракцию. Из полученного этана получают самый дешевый этилен. Основными промышленными методами газоразделения в США являются низкотемпературные абсорбция и ректификация при большем удельном весе первого метода. Абсорбционные процессы протекают нри пониженном молекулярном весе абсорбента (до 180 и ниже), при температуре, близкой к О и даже ниже, для чего предусматривается пропановый или аммиачный холодильный циклы при довольно высоких давлениях, а также при большой циркуляции абсорбента. [c.257]

    Установка и технологическая схема потоков. Вследствие большого количества продуктов реакции (выше 32 отдельных веществ) установка должна иметь секцию разделения компонентов и очистки бутадиена. Промышленный метод состоит из следующих операций каталитическое превращение этилового спирта в бутадиен разделение жидких компонентов (в нормальных условиях) выделение из газов реакции неочищенного бутадиена при помощи абсорбции этиловым спиртом и очистка бутадиена. [c.362]

    Распространенный промышленный метод получения нитрата натрия основан на абсорбции щелочами окислов азота, содержащихся в выхлопных нитрозных газах производства разбавленной азотной кислоты, и последующей инверсии нитрита в нитрат натрия. [c.478]

    В промышленности наиболее широко применяют следующие методы осушки газов абсорбцию влаги гигроскопическими жидкостями, адсорбцию влаги твердыми поглотителями, конденсацию влаги за счет сжатия или охлаждения газа. [c.286]

    Все промышленные методы получения соляной кислоты сводятся к двум основным стадиям получению хлорида водорода и его абсорбции водой. Вторая стадия процесса одинакова для всех методов получения соляной кислоты. [c.5]

    Аксельрод Ю. В., Дильман В. В..Вайнберг А. М., Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 6. 1971, стр. 283. Метод расчета противоточной абсорбции, осложненной химической реакцией. [c.267]

    В настоящее время существует два промышленных метода выделения -бутадиена селективная абсорбция медноаммиачными растворами и экстрактивная перегонка в присутствии фурфурола. [c.186]

    Распространенный промышленный метод получения нитрата натрия основан на абсорбции щелочами окислов азота, содержащихся в выхлопных нитрозных газах производства слабой азотной кислоты. [c.94]

    В настоящее время в нефтехимической технологии с каждым годом повышаются требования к чистоте получаемых продуктов. Перед промышленностью впервые поставлена задача крупнотоннажного производства индивидуальных углеводородов концентраций 99.9% и более, т. е. такой чистоты, которая совсем недавно была недостижима даже для исследовательских целей. Селективность подавляющего большинства промышленных методов разделения (абсорбции и хемосорбции, ректификации, экстрактивной и азеотропной и экстракции) недостаточна для выделения чистых индивидуальных углеводородов вследствие близости их физико-химических констант. [c.225]

    Газы реформинга обычно содержат небольшие количества азота, окиси углерода, углекислого газа и ацетилена. Азот и окись углерода пропаном не отмываются и сопутствуют водороду. Если присутствие окиси углерода в водороде недопустимо, она может быть удалена известными в промышленности методами, например гидрированием или абсорбцией медноаммиачным раствором. Азот является инертной примесью его содержание в газах реформинга [c.386]

    В промышленности существует несколько методов извлечения этилена из газов . низкотемпературное фракционирование, абсорбционный метод, адсорбционный (гиперсорбция), абсорбция растворами солей меди и др. [c.55]

    В промышленности метод псевдоожижения широко используется для осуществления различных технологических процессов, например обжиг руды, проведение каталитических реакций, замораживание пищевых продуктов, сушка, покрытие полимерами различных предметов, термическая обработка, классификация твердых частиц по размерам, сепарация минералов по плотности, абсорбция и регенерация растворителей, термическое обезвреживание сточных вод, микрокапсулирование лекарственных препаратов, транспорт порошков. [c.682]

    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]


    Для проведения оптимизации аппарата необходима разработка математической модели, включающей адекватное описание элементарных процессов в абсорбционной зоне аппарата. Экспериментальных работ, которые дают материал для разработки и проверки подобных моделей, крайне мало. Это объясняется сложностью и трудоемкостью, а зачастую и отсутствием методов измерения характеристик двухфазного течения газ — капельная жидкость и массообмена в области параметров, характерных для промышленных аппаратов. Например, в работе [374] в опытах по абсорбции фтористого водорода водой исследовался вопрос об интенсивности массообмена в зависимости от расстояния от форсунки. Однако полученные авторами интересные выводы нельзя распространить на промьшшенные колонны, так как опыты проводились на колонне диаметром 0,1 м при Ур = 0,13 м/с, 5 = 0,23 м /(м ч), средним диаметром капель 8 мкм. [c.251]

    Л -Метилпирролидон находит применение в промышленности в качестве высокоэффективного растворителя в производстве термостойких полимерных материалов. а также в процессах выделения ароматических, ацетиленовых и диеновых углеводородов из их смесей с парафиновыми углеводородами методами экстракции, абсорбции и экстрактивной ректификации. [c.314]

    Обычно метод абсорбции применяется также для извлечения бензола и каменноугольных легких масел из коксового газа. Часто для этой цели используют масла, аналогичные описанным выше. Теоретически в отличие от извлечения бензина в этих случаях эффективнее будут действовать масла циклического характера. Было опубликовано даже сообщение об использовании с этой целью тетрагидронафталина, однако нестойкость таких веществ снижает возможность их промышленного применения. [c.471]

    В промышленных условиях эта реакция осуществляется в контактных аппаратах, представляющих собой многослойный каталитический реактор с встроенными между слоями и выносными теплообменниками, предназначенными для отвода реакционного тепла. Основное применение в сернокислотной промышленности получили схемы контактных узлов, работающих по методу одинарного (одностадийного) контактирования (рис. 23) и по методу двойного контактирования и двойной абсорбции (рис. 24). Последний метод предполагает организацию двухстадийного контактирования. На рис. 24 представлена схема (3+ 1), первая стадия которой включает первые три слоя катализатора, а вторая — последний слой в реакторе. Каждая из стадий контактирования завершается абсорбцией 50з. Разделение процесса окисления на две стадии с последующей абсорбцией ЗОз способствует увеличению скорости реакции (IV,73) на заключительной (второй) стадии вследствие значительного снижения эффекта торможения реакции продуктом ЗОз.что позволяет достичь более высокой степени превращения ЗОг в 50з по сравнению с получаемой при одностадийных схемах контактирования. [c.141]

    Одним из перспективных направлений в развитии сернокислотной промышленности является повышение давления на всех стадиях получения продукции. В настоящее время очевидны преимущества этого способа по сравнению с широко распространенной технологией получения серной кислоты по методу двойного контактирования и двойной абсорбции под атмосферным давлением. В работе [29] выполнен автоматизированный синтез оптимального агрегата производства серной кислоты под давлением 1,2 МПа и показана его высокая экономическая эффективность по сравнению с зарубежными аналогами. Синтез оптимального агрегата был выполнен в традиционной постановке структурно-параметрической оптимизации [30]. [c.272]

    В промышленности разделение воздуха с целью получения кислорода, азота и аргона осуществляется путем сжижения его с последующей низкотемпературной ректификацией. Изучается также возможность разделения воздуха методом абсорбции на цеолитах и диффузионным методом, основанном на различной скорости диффузии газов через полупроницаемые мембраны. [c.229]

    Следует подчеркнуть, что применение мембранного разделения для этих целей изначально рассматривалось в качестве альтернативы другим традиционным способам разделения — ректификации, абсорбции, адсорбции. Так, мембранное разделение изотопов урана с получением обогащенного гексафторидом урана ( иРб) потока используется в промышленном масштабе с 40-х годов нашего столетия [35]. Кроме того, этот метод используется для выделения радиоактивных изотопов благородных газов из ретантов заводов по переработке ядерного горючего, из защитной атмосферы ядерных реакторов на быстрых нейтронах и т. д. [99]. [c.314]

    В некоторых нефтехимических синтезах, в частности при получении бутилкаучука, изопрена, термостойких пластических масс,, используют только разветвленные олефины С4—Се. Примеси нормальных олефинов, как правило, ухудшают свойства готового продукта. Например, химическая инертность, высокая термостабильность и низкая электропроводность бутилкаучука достигаются-лишь при отсутствии в мономере (изобутене) примесей н-бутенов. Применяемая в промышленности абсорбция изобутена из фракции олефинов С4 (их содержится 50—60%) серной кислотой не обеспечивает должной чистоты мономера — в нем остается небольшое количество бутена-1, а также меркаптана. Применение адсорбционных методов с использованием цеолитов (главным образом a ) позволило решить эту проблему, в частности выделить-99,9%-ный изобутен. . [c.199]

    Переход к исследованию совмещенных процессов является следствием развития метода математического моделирования, способствовавшего пониманию сложных явлений. Совместное протекание нескольких процессов, например ректификации и химической реакции, абсорбции с химической реакцией не является чем-то исключительным в промышленных условиях и обычно известно. Но, как правило, один из них превалирует по скорости, интенсивности и прочим показателям над другим, как бы протекая на фоне другого. Если нежелательное влияние побочного процесса становится существенным, то принимаются меры по его подавлению, например, путем снижения температуры или добавлением стабилизаторов в случае химических реакций. [c.353]

    СлободяникИ. П., ЖПХ, 40, 361 (1967). Метод анализа процессов абсорбции с химической реакцией в промышленных аппаратах. [c.275]

    В промышленности получили применение следующие методы осушки газа абсорбция влаги гигроскопическими жидкостями, адсорбция влаги активированными твердыми осушителями, конденсация нлаги за счет сжатия или охлаждения газа. [c.56]

    Для очистки АВС в промышленности используются методы абсорбции жидкими поглотителями (мокрый метод) и адсорбции твердыми поглотителями (сухой метод). При этом, процесс очистки может производиться на различных стадиях производства  [c.193]

    Дан краткий обзор основных методов извлечения газообразных и твердых примесей из промышленных газов (абсорбция, адсорбция, фильтрация, ультразвуковые и электромагнитные). Специальные разделы посвяш.ены экономике процессов очистки и вопросам охраны окружающей среды. [c.4]

    В период разработки процесса получения чистого бутадиена для производства синтетического каучука поглощение его водными растворами аммиачномедпых солея стало одним из промышленных методов [8]. Основная методика заключалась в абсорбции бутадиена раствором основной медной соли с pH от 9,5 до 12,5 с последующим выделением бутадиена нагреванием раствора. Бутилены также поглощаются раствором, но они выделяются из него при более низкой температуре, после чего можно получить бутадиен чистотой в 98%. Тот н е общий метод применялся для очистки изопрена [17]. С нинериленом водный кислый раствор полухлористой меди и хлористого аммония образует комплекс, который при нагревании выделяет нри 43—48° г ис-форму, а при 65° — почти чистую транс-форму [3, 24]. Изопрен выделяется из комплекса с полухлористой медью при нагревании от 35 до 65° [211. Наиболее раннее применение хлористой меди для выделения бутадиена описано Филером в 1931 г. [4]. [c.388]

    Процесс удаления ацетилена из пирогаза или из концентрпро-ванных этиленовых фракций селективным каталитическим гидрированием в настоящее время является основным промышленным. методом. Однако в ряде случаев оказывается более целесообразным применение селективной абсорбции ацетилена (при небольших мощностях установки этилена, при большом содержании ацетилена в газовых смесях, когда необходимо выделить его в чистом виде). Имеется целый ряд селективных растворителей ацетилена, среди которых особое место занимают ацетон и диметилформамид. [c.87]

    Основными промышленными методами газоразделения являются абсорбция, низ котемцературная ректификация, хе-МО СОрбЦИЯ. [c.27]

    Получение. Основной промышленный метод получения Э,— пиролиз газов (этана — в присутствии кислорода при 700°С, пропана и бутана — при 800°С) или жидких нефтепродуктов при 700—850°С. Э. получают также при термич. крекинге (550°С) нефти и каталитич. крекинге (550—600°С) тяжелых нефтепродуктов. Полученный Э. очищают обычно фракционированием нри 100°С и давлении 4—5 Мн/м (40—50 кгс/см ) возможна также очистка фракционированием при —130°С и давлении 0,5—0,8 Мн1м (5—8 кгс1см ), низкотемпературной абсорбцией с последующим фракционированием, гинерсорбцией на активированном угле. [c.501]

    Процессы производства минеральных солей разнообразны соответственно огромному ассортименту солей. Однако технологические схемы производства почти всех солей включают типовые процессы, общие для солевой технологии. Типовые процессы солевой технологии измельчение твердых материалов (сырья, спека), обогащение сырья, сушка, обжиг, спекаиие, растворение, выщелачивание, отстаивание, фильтрация, выпаривание, охлаждение растворов, кристаллизация. Эти процессы характерны для любого солевого производства. В технологии солей часто применяются также процессы абсорбции и десорбции. Большинство типовых процессов основано на физических методах переработки, особенно на стадиях подготовки сырья и окончательной доработки продукта. Образование же минеральных солей происходит в результате процессов, основанных на химических реакциях при обжиге, спекании, выщелачивании, абсорбции. Выщелачивание природного сырья (или спеков) сопровождается реакциями обменного разложения. При обжиге идут окислительно-восста-новительные реакции. Хемосорбционные процессы, лежащие в основе синтеза солей из полупродуктов химической промышленности, сопровождаются реакциями нейтрализации. [c.141]

    Основным промышленным методом получения Н28О4 является каталитическое окисление 8О2 кислородом воздуха до 80з с последующей абсорбцией триоксида серы серной кислотой во избежание образования тумана. Катализатором в таком процессе служит 20 с добавками К2804 или КЬ2804 в качестве активаторов, а окисление 8О2 проводят при температуре около 5(Ю°С. [c.315]

    ГАЗОВ РАЗДЕЛЕНИЕ — аздолоние газовых смесей 1И1 их компоненты или фракции. Основные промышленные методы разделения газов фракционированная конденсация в сочетании с ректификациеи н абсорбцией (метод глубокого охлаждения) сорбция селективными жидкими поглотителями (абсорбция), используемая гп. обр. при очистке газовых смесей 0I СО2, H.2S, NHj и др. (см. Газов очистка) сорбция [c.377]

    Очистка газа методом низкотемпературной абсорбции метанолом основана на физической абсорбции метанолом примесей, содержащихся в газовых смесях. В промышленных условиях процесс очистки газов метанолом проводят под давлением 1,0—3,0 МПа в интервале температур от —45 до —60°С. При указанных условиях метанол является эффективным абсорбентом двуокиси углерода, сернистых соединений и органических веществ, содержащихся в азотоводородной смеси. [c.48]

    Абсорбция и десорбция — массообменные процессы, составляющие основу абсорбционного разделения нефтяных и природных газов. Абсорбционный метод разделения углеводородных газов применяется в промышленности для извлечения газового бензина и жидких газов (пролан-бутановая смесь). [c.83]

    Всесторонний анализ различных возможных методов регенерации отработанной серной кислоты от процесса алкилирования показывает, что в настоящее время наиболее целесообразна регенерация кислоты, основанная на ее термическом расщеплении. Этот метод получил широкое распространение в промышленной практике за рубежом. Так, в 1962 г. таким способом е США было получено около 0,8 млн. т кислоты (вторичная кислота) [167]. По этому же принципу работает несколькс отечественных установок. Сущность метода заключаете в сжигании отработанной кислоты с образованием сер нистого ангидрида, последующем его окислении в сер-ный ангидрид и абсорбции последнего серной кислотой В перспективе такая регенерация отработанной серно кислоты процесса алкилированиз изобутана олефинами вероятно, станет одним из основных методов ее утили зации. [c.164]

    Методы очистки газов в соответствии с характером вредных примесей делятся на методы очистки от аэрозолей и очистки от газообразных и парообразных примесей. Все способы очистки газов определяются в основном физико-химическими свойствами примесей, их составом, агрегатным состоянием, диснерс1юстью и др. Разнообразие вредных примесей в промышленных выхлопах обусловливает большое разнообразие приемов очистки и применяемых реагентов. Классификация и краткая характеристика наиболее распространенных методов очистки газов от аэрозолей помещена в табл. 17. Очистка газов от газообразных и парообразных примесей особенно характерна для химической промышленности и широко применяется на химических предприятиях. Методы очист-ки промышленных газовых выхлопов от газообразных и парообразных примесей можно разделить на три основные группы 1) абсорбция жидкостями 2) адсорбция твердыми поглотителями и 3) каталитическая отастка. [c.229]

    Как показали исследования, существующая воднонюислотная абсорбция не обеспечивает требуемого по санитарным нормам содержания фтора в газах из-за значительного давления насыщенных паров НР и 51р4 над водными растворами Н251Рб, а также наличия в газовой фазе тонкодисперсных фтористых соединений, не улавливаемых водой [94]. Для улавливания остаточных количеств фтора разработаны и внедрены в промышленность щелочная абсорбция, сорбция с применением ионообменных фильтров, активного угля и силикагеля, конденсация парогазовой смеси в сочетании с другими методами и др. [c.231]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]


Смотреть страницы где упоминается термин Абсорбция промышленные. методы: [c.294]    [c.6]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.484 ]




ПОИСК







© 2025 chem21.info Реклама на сайте