Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты гистидин, биосинтез

    Известно, что у сальмонелл, например, структурные гены для 10 ферментов биосинтеза аминокислоты гистидина сцеплены в одном опероне. Подобное сцепление функционально связанных генов, как мы уже знаем, характерно для бактерий. [c.290]

    Все природные а-аминокислоты делятся на незаменимые которые поступают в организм только из внешней среды (ва-лин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), и заменимые, синтез которых происходит в организме. Исходными веществами для биосинтеза [c.51]


Рис. 124. Гликолитическая цепь (начиная с 3-фосфоглицерата) и цикл трикарбоновых кислот как источники предшественников для биосинтеза, аминокислот (кроме гистидина) , Рис. 124. Гликолитическая цепь (начиная с 3-фосфоглицерата) и <a href="/info/1343">цикл трикарбоновых кислот</a> как источники предшественников для биосинтеза, аминокислот (кроме гистидина) ,
    Возможную роль аминокислот в качестве предшественников, в биосинтезе пуринового ядра изучали уже давно. В опытах с применением меченых соединений было найдено, что гистидин и аргинин, несмотря на их структурное сходство с пуринами, не являются непосредственными источниками азота для синтеза пуринов [669, 670]. Вместе с тем было показано, что срезы печени голубя синтезируют гипоксантин и что добавление глутамина или щавелевоуксусной кислоты к таким тканевым препаратам повышает количество синтезируемого гипоксантина [671—673]. [c.283]

    Бактериальные опероны, ответственные за биосинтез аминокислот, часто обладают дополнительной системой контроля экспрессии, основанной па преждевременной терминации транскрипции. Этот процесс, называемый аттенуацией, функционирует независимо от промоторно — операторной системы регуляции экспрессии. Аттенуация используется для регуляции экспрессии в ответ на воздействие различных физиологических факторов. Процесс регуляции на основе аттенуации включает начало трансляции, остановку рибосомы и переключение альтернативных вариантов вторичной структуры РНК, один из которых формирует терминатор транскрипции, а другой — препятствует образованию терминатор-ной структуры. У Е. соИ объектами аттенуации являются опероны триптофана, фенилаланина, гистидина, треонина, лейцина, изолейцина и валина. [c.118]

    Последней рассматриваемой в этой главе, но далеко не последней по важности, аминокислотой является гистидин. Биосинтез этой аминокислоты, которую можно считать суперкатализатором , присутствующим в активных центрах ферментов, начинается с примечательной реакции, идущей с участием АТР, клеточного суперкофермента . Реакция состоит в замещении атомом N-1 аденинового ядра, расположенного при атоме С-1 в молекуле PRPP (стадия а, рис. 14-28). Образующийся [c.159]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]


    Биологическое действие. Соединение N -формил-ТГФК называют фолиниковой кислотой. Она является главной формой дериватов фолиевой кислоты в крови. Фолиевая кислота играет важную роль в метаболизме глицина, серина, глутамата, гистидина, бетаина и холи-на. Ее производные играют роль в биосинтезах путем включения фор-мильного углерода в пуриновый скелет и в синтезе тимина. У низших организмов фолиевая кислота необходима для образования N-фор-милметионина — инициирующей аминокислоты в синтезе белка. [c.362]

    Тетрагидрофолевая кислота. Важную роль в процессах распада и биосинтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот (серина, метионина, гистидина и др.) играют реакции метилирования. Биологическое метилирование может осуществляться, по [c.276]

    В состав фолиевой кислоты входит другой витамин — /г-аминобензойная кислота и также весьма активная в физиологическом отношении глютаминовая кислота. В тканях растений и животных фолиевая кислота связывает обычно три или семь остатков глютаминовой кислоты. Соединение птеридина и пара-аминобензойной кислоты (без глютаминовой кислоты) называют птериновой кислотой. Основной функцией фолиевой кислоты в организме является перенос остатка формальдегида и муравьиной кислоты. Эти соединения являются исходными материалами для биосинтеза пуриновых оснований, некоторых аминокислот (серина, тирозина, гистидина и метионина),. [c.183]

    Примером этого правила могут служить пути биосинтеза аминокислот. Как показано на фиг. 33, входящие в состав белков двадцать аминокислот можно разбить в соответствии с происхождением углеродных атомов их скелетов на четыре семейства. Синтез семейства ароматических аминокислот и гистидина начинается с глюкозы, расположенной в самом начале гликолитического пути. Синтез аминокислот, входящих в семейство пировиноградной кислоты, начинается с фосфоглицериновой кислоты, находящейся в середине, и с пировиноградной кислоты, находящейся в конце гликолитического пути. Синтез аминокислот глутаминового семейства начинается с а-кетоглутаровой кислоты, расположенной в середине цикла лимонной кислоты, а синтез штокшлот аспарагинового семейства— с щавелевоуксусной кислоты, находящейся в конце этого цикла. Теперь мы можем рассмотреть пути синтеза отдельных аминокислот, принадлежащих к этим семействам. [c.71]

    Биосинтез определенных аминокислот из более простых соединений в большинстве случаев осушествляется в ходе последовательных ферментативных реакций, и гены, кодирующие синтез соответствующих ферментов, у бактерий обычно сгруппированы в одном опероне. Например, гистидиновый оперон, в котором локализованы гены для ферментов, катализирующих последовательные стадии синтеза гистидина у Salmonella, содержит гены для десяти ферментов, каждый из которых катализирует одну из реакций, ведущих к образованию гистидина. Аналогично, аргининовый оперон Е. соИ содержит гены для восьми ферментов, которые в совокупности катализируют цепь реакций превращения глутамата в аргинин. Репрессия, вызванная аминокислотой, как и следует ожидать, предотвращает образование всех кодируемых данным опероном ферментов. [c.68]

    Даже если генетические возможности микроорганизма позволяют ему продуцировать определенный фермент, при этом еще не гарантируется его синтез (транскрипция и трансляция). Синтез многих ферментов и ферментных систем зависит от присутствия или отсутствия определенных регуляторных компонентов, или триггеров , образующихся эндогенно или вносимых в культуральную среду. Вещества, стимулирующие транскрипцию, называют индукторами, а сам процесс стимуляции называют индукцией. В тех случаях, когда индукторов нет, говорят о деиндукции. Другие вещества, называемые репрессорами, напротив, предотвращают транскрипцию, а сам процесс предотвращения транскрипции называют репрессией в отсутствие репрессора происходит дерепрессия. Описаны различные типы репрессии у бактерий простая репрессия по типу обратной связи, или репрессия конечным продуктом мультивалентная репрессия, присущая определенным ферментам, участвующим в синтезе аминокислот с разветвленной цепью координированная репрессия, когда все ферменты, участвующие в биосинтезе, согласованно репрессируются в присутствии высоких концентраций продукта реакции (например, триптофана или гистидина). Описанные ниже эксперименты иллюстрируют некоторые типы регуляции синтеза бактериальных ферментов путем индукции и репрессии. [c.414]

    Первая группа. Аминокислоты, не влияющие на рост стрептомицета, но стимулирующие биосинтез антибиотика (аргинин, гистидин, лизин, глицин, а-аланин, валин, фенилаланин, изолейцин). [c.237]

    Оперены биосинтеза аминокислот. У Е. соИ и S. typhimurium весь путь биосинтеза гистидина контролируют девять тесно сцепленных генов (рис. 16.7), регулируемых по оперонной схеме. При индукции, которая происходит, когда в клетке истощается запас свободного гистидина, все девять генов His-оперона транскрибируются на одну молекулу и РНК размером около 10 ООО нуклеотидов. Появление избытка гистидина приводит к репрессии His-оперона. [c.418]


    После открытия у бактерий Ф. Жакобом и Ж. Моно оперонов возник вопрос универсальна ли подобная организация генетического материала Генетический анализ у эукариот (в частности, у их простейших представителей — дрожжей и нейроспоры) показал, что гены, контролирующие различные этапы одного и того же пути метаболизма, как правило, случайно разбросаны по всему геному и обычно не образуют скоплений, напоминающих опероны бактерий (рис. 19.2). Было найдено несколько исключений, привлекших пристальное внимание. Например, компактный участок генетического материала у грибов контролирует три реакции в биосинтезе гистидина. Сходная ситуация (также у грибов) обнаружена при изучении генетического контроля биосинтеза ароматических аминокислот — триптофана, тирозина, фенилаланина, а также жирных кислот. Может быть, в этих и некоторых других случаях наблюдается некий атавизм — пример оперонов, не типичных для эукариот  [c.479]

    В последнее время показано, что индукция и репрессия могут быть генерализованными, т. е. контролироваться не каким-либо одним конкретным индуктором или корепрессором, а целой группой сходных с тем и другим соединений. Накапливаются также сведения о том, что один-единственный эффектор (например, ррСрр—3 -пирофосфо-гуанозин-5 -дифосфат) может индуцировать биосинтез целого семейства ферментов (например, ферментов биосинтеза гистидина и ряда других аминокислот). Поэтому проблема индукции и репрессии биосинтеза ферментов достаточно сложна, особенно в отношении индукции синтеза ферментов, не свойственных данному организму (например, ферменты детоксикации инсектицидов у насекомых). [c.477]

    В ЭТОЙ главе рассматривается биосинтез аминокислот и некоторых молекул, которые из них образуются. Прежде всего мы рассмотрим реакции, приводящие к включению азота в состав аминокислот. Этот путь начинается с восстановления N2 до в клетках азотфиксирующих микроорганизмов. Затем NH4 включается в аминокислоты через глутамат и глутамин, два ключевых соединения азотистого метаболизма. Десять из основного набора двадцати аминокислот синтезируются из промежуточных продуктов цикла трикарбоновых кислот и других метаболических последовательностей с помощью несложных реакций. Мы рассмотрим эти биосинтетические пути и опишем биосинтез ароматических аминокислот и гистидина в качестве примеров аминокислот, синтезирующихся более сложным образом. На самом деле человек должен получать эти десять аминокислот с пищей, потому их и называют незаменимыми аминокислотами. В этих реакциях участвуют два весьма любопытных посредника тетрагидрофолят, многоцелевой переносчик одноуглеродных единиц трех степеней окисления, и 5-аденозилметионин, главный донор метильных групп. Еще одна важная сфера наших интересов-регуляция метаболизма аминокислот. На примере глу-тамин-синтетазы мы проиллюстрируем некоторые общие принципы регуляции. Конец настоящей главы посвящен синтезу и распаду гема. [c.230]

    Многие опухоли у человека возникают в результате воздействия токсичных химических веществ. Поскольку эти химические канцерогены обычно мутагенны, можно думать, что повреждение ДНК лежит в основе и канцерогенеза, и мутагенеза. Эти соединения важно идентифицировать и оценить их потенциальную биологическую активность, чтобы свести к минимуму то воздействие, которое они оказывают на человека. Брюс Эймс (Bru e Ames) разработал простой и чувствительный тест для выявления химических мутагенов. На чашку Петри помещают тонкий слой агара, содержащий около 10 клеток специально сконструированного тест-штамма SalmoneUa. Эти бактерии не способны расти в отсутствие гистидина, поскольку они несут мутацию в одном из генов биосинтеза этой аминокислоты. Добавление мутагена в центр чашки индуцирует появление множества новых мута- [c.82]

    В настоящее время известны еще два оперона биосинтеза аминокислот у Е. соН, содержащих аттенюаторные участки. Фенилала-ниновый оперон и гистидин о вьтй оперон, подобно три пто фановому оперону, содержат регулируемые участки терминации перед первым геном, кодирующим фермент. И в этих случаях лидерная область перед участком терминации транслируется. Удивительна последовательность аминокислот в лидерном пептиде фенилаланинового оперона 7 из 15 остатков-фенилаланины (рис. 28.15). Еще поразительнее лидерный нентид гистидинового оперона он содержит семь остатков гистидина подряд. Очевидно, что эти лидерные мРНК предназна- [c.120]


Смотреть страницы где упоминается термин Аминокислоты гистидин, биосинтез: [c.168]    [c.80]    [c.220]    [c.705]    [c.390]    [c.668]    [c.955]    [c.973]    [c.65]    [c.241]    [c.44]    [c.113]    [c.163]    [c.223]    [c.487]    [c.89]    [c.53]    [c.101]    [c.80]    [c.98]    [c.125]    [c.89]   
Биология развития (1979) -- [ c.53 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидин



© 2025 chem21.info Реклама на сайте