Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические аминокислоты, биосинтез

    Биосинтез ароматических аминокислот через шикимовую кислоту, по-видимому, протекает по следующей схеме  [c.835]

    БИОСИНТЕЗ АРОМАТИЧЕСКИХ АМИНОКИСЛОТ [c.693]

    Таким образом, шикимовая кислота, которая отнюдь не является ароматическим соединением, оказалась промежуточным продуктом в процессах биосинтеза трех ароматических аминокислот и других существенных ароматических соединений [98Ь]. [c.137]


Рис. 48. Начальные этапы биосинтеза ароматических аминокислот Рис. 48. <a href="/info/972707">Начальные этапы</a> <a href="/info/97408">биосинтеза ароматических</a> аминокислот
    Биосинтез ароматических аминокислот  [c.138]

    В растениях содержится большое число соединений, которые образуются из ароматических аминокислот или промежуточных продуктов шикиматного пути биосинтеза. Среди этих метаболитов преобладают алкалоиды (см. гл. 30.1) и различные растительные фенолы. Ниже обсуждаются некоторые основные биогенетические особенности растительных фенолов и других растительных метаболитов шикимовой кислоты. [c.710]

    На этом основании авторы сделали вывод, что образование лигнина связано с биосинтезом шикимовой кислоты и ароматических аминокислот. Продолжая свое исследование, они наблюдали за процессом лигнификации путем количественного определения содержания ряда веществ (целлюлозы центозанов пектина крахмала шикимовой кислоты фенилаланина и тирозина) в молодых растениях зеленого гороха и красной сосны, выращивавшихся в водных культуральных растворах, содержавших различные предшественники лигнина (например, этанол, ацетат, пировиноградную, шикимовую, феруловую, фенилпиро-виноградную и и-оксифенилпировиноградную кислоты, фенилаланин, тирозин, кониферин и сирингин). [c.769]

    В первую очередь, выделяется группа генетически кодируемых (протеиногенных) аминокислот — их всего двадцать (табл. 4.1.1) — это те аминокислоты, которые включаются в состав белков в процессе биосинтеза в рибосомах под контролем информационной РНК. Постольку они различаются между собой только функцией R, по свойствам последней их и классифицируют далее это углеводородные аминокислоты (Gly, Ala, Val, Leu, (le), для которых характерны гидрофобность или липо-фильность ароматические аминокислоты (Phe, Туг, Тгр) с их тенденцией к реакциям электрофильного замещения аминокислоты с повышенной кислотной способностью (Asp, Glu) и повышенной основностью (Lys, His, Arg)  [c.69]

    Индольный алкалоид ячменя грамин (311) представляет собой один из наиболее простых продуктов модификации ароматической аминокислоты триптофана (307). Изучение биосинтеза грамина явилось поворотным пунктом в развитии исследования ио биосинтезу растительных алкалоидов эксперименты [243] по специфическому включению метки из [3- С]триптофана в метиленовую группу боковой цеии грамина были первыми из множества такого рода экспериментов (если не считать работ ио изучению метилирования). Впоследствии было однозначно доказано, что в грамин (311) включается вся индольная кольцевая система триптофана (307) и атом С-3 с двумя атомами водорода [244]. Оказалось также, что в боковую цепь грамина из триптофана переходит и атом азота [245], а метильные группы последовательно вводятся в соединение (310) [246]. Эти данные согласуются с возможным механизмом биосинтеза грамина, где промежуточным соединением является аддукт триптофана с пиридоксальфосфатом (схема 52) [247]. Согласно предлагаемому механизму, атом азота из аминогруппы триптофана попадает в конечный продукт в результате аминирования интермедиата (308) для этого, однако, в растениях должен иметь место специфический процесс, обеспечивающий перенос атома азота от соединения (309) к (308). [c.606]


    Основное различие в реакциях путей катаболизма и анаболизма заключается в том, что они редко повторяют друг друга. Продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так происходит при синтезе многих аминокислот, например, при распаде ароматических аминокислот образуются ацетил-КоА и фумаровая или янтарная кислоты, тогда как для синтеза тех же аминокислот исходными продуктами служат фосфоенолпировиноградная кислота и эритро-зо-4-фосфат (см. подробнее тему 5 Пути биосинтеза протеиногенных аминокислот ). [c.451]

    По Норду [175], эта схема биосинтеза ароматических аминокислот интересна тем, что указывает на возможность образования структурных звеньев лигнина подобным же образом. [c.787]

    Производные моносахаридов активно участвуют в метаболизме живой клетки. С их многообразными превращениями связаны фотосинтез, обес печение клетки энергией, детоксикация и вывод ядовитых веществ, проникающих извне или возникающих в ходе метаболизма, биосинтез ароматических аминокислот —тирозина и фенилаланина, а также ряда других ароматических соединений, образование сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот), которые играют главную роль в построении субклеточных структур, обеспечивающих правильное функционирование клетки. [c.15]

    Гипотеза о биосинтезе фенольных соединений из-аминокислот, точнее из продуктов их распада, не получила экспериментального подтверждения в позднейших исследованиях. Хотя опыты с изотопами и показывают, что ароматические аминокислоты используются растениями для построения многих фенольных соединений (см. ниже), такое включение не сопровождается их расщеплением — ЭЮ пример использования уже готового фенольного ядра. [c.144]

    Префеновая кислота также обладает большим разнообразием биосинтетических превраш,ений. Она является предшественником ароматических аминокислот, фенилаланина и тирозина- при декарбоксилировании префе-новой кислоты совместно с дегидратацией формируется бензольный фрагмент (в дальнейшем — фрагмент фенилаланина), при ее декарбоксилировании совместно с дегидрированием формируется фенольный фрагмент (в дальнейшем — фрагмент тирозина). Полученные таким образом арилзамещенные пиро-виноградные кислоты далее аминируют-ся одним из доноров аминогруппы обычным образом, как это описано для алифатических а-кетокислот в биосинтезе аминокислот (схема 8.4.8). [c.218]

    Как правило, в катаболических реакциях участвует НАО+, и поэтому не совсем обычно, когда в таких реакциях в качестве окислителя выступает ЫАОР+. Тем не менее у млекопитающих ферменты пентозо-фосфатного цикла специфичны к НАОР+. Существует предположение, что это связано с потребностью в МАОРН для процессов биосинтеза (гл. 11, разд. В). Тогда становится понятным функционирование пенто-зофосфатного пути в тканях с наиболее активным биосинтезом (печень, молочная железа). Возможно, что в этих тканях Сз-продукты цикла вовлекаются в процессы биосинтеза, как показано на рис. 9-8, Л. Далее читателю должно быть уже понятно, что любой продукт от С4 до С может быть выведен из цикла в любых желаемых количествах без каких-либо нарушений в работе этого цикла. Например, мы знаем, что образующийся на промежуточной стадии С4-продукт эритрозо-4-фосфат используется бактериями и растениями (но не животными) для синтеза ароматических аминокислот. Подобным же образом рибозо-5-фос-фат необходим для образования нуклеиновых кислот и некоторых аминокислот. [c.343]

    Биосинтез монолигнолов включает две стадии. На первой стадии из продуктов метаболизма углеводов фосфоенолпировиноградной кислоты и 0-эритрозо-4-фосфата (см. 11.10.3) через шикимовую кислоту образуются ароматические аминокислоты. На второй стадии после дезаминирования аминокислот получаются коричная кислота и её гидроксилированные и метоксилированные производные, восстановление которых даёт три ароматических спирта, являющихся предшественниками лигнина. [c.390]

    Схема 12.9. Шикиматный путь биосинтеза ароматических аминокислот [c.391]

    Растения способны синтезировать очень широкую гамму фенольных соединений. С участием промежуточных продуктов шикиматного пути биосинтеза лигнина (см. 12.5.1) происходит образование фенолкарбоновых кислот, простых фенолов, фенольных альдегидов и спиртов, хинонов, нафтохинонов, антрахинонов, лигнанов, ку-маринов, ароматических аминокислот (рис. 14.5). Образуются также бензольные кольца терпеновых хинонов (убихинонов, пластохинонов, филлохинона) и хроманолов (токоферолов), участвующих в процессах фотосинтеза и дыхания. [c.520]

    Шнкиматный путь биосинтеза 685 30-3.2. Биосинтез ароматических аминокислот 693 [c.11]

    В высших растениях, особенно среди представителей семейств крестоцветных, резедовых, ирисовых и тыквенных, найдены четыре л-карбоксизамещенные ароматические аминокислоты (30) — (33) [23—24]. Эти кислоты входят в большую группу аминокислот, обнаруженных в высших растениях, и обычно не встречаются в составе белков. Химические свойства и биогенез этих аминокислот широко изучались, и пути нх биосинтеза в общих чертах представлены на схеме (14). Согласно предложенной схеме, изохоризмовая кислота (28), образующаяся из хоризмовой кислоты (9), перегруппировывается в соединение (29) по реакции, которая формально аналогична орто-кляйзеновской перегруппировке, катализируемой хоризматмутазой [25]. Аминокислоты (30) и (31) затем образуются из (29) подобно тому, как .-фенилаланин (10) и .-тирозин [c.695]


    Физиологическая роль тирозин-3-монооксигеназы чрезвычайно велика, поскольку катализируемая этим ферментом реакция определяет скорость биосинтеза катехоламинов, регулирующих деятельность сердечно-сосудис-той системы. В медицинской практике широко используются ингибиторы декарбоксилазы ароматических аминокислот, в частности а-метилдофа (альдомет), вызывающий снижение артериального давления. [c.443]

    О биосинтезе беталаинов имеется мало четкой информации, хотя известно, что ароматические аминокислоты, такие, как тирозин и дигидроксифенилаланин [ДОФА (6.75)], включаются [c.252]

    Алифатические аминокислоты синтезируются из продуктов биохимического расщепления углеводов — триоз (глицин, серин), пировиноградной кислоты (аланин, валин) или а-кетоглутаровой кислоты (глутаминовая кислота). В биосинтезе ароматических аминокислот участвует шикимовая кислота. Наконец, при биосинтезе аминокислот, содержащих гетероциклическое ядро, два углеродных атома ядра возникают из С, и Са атомов 5-фосфорибозилпнрофосфата (см. стр. 394). [c.403]

    На схеме 6.2 представлены основные ступени образования предшественников лигнина [104, 106, 107, 206, 242]. Биосинтез лигнина начинается с образованием глюкозы (I) при фотосинтезе. Она превращается в шикимовую кислоту (И)—важнейшее промежуточное соединение в так называемом пути шикимовой кислоты. В качестве конечных соединений на этом пути образуются две ароматических аминокислоты Ь-фенйлаланин (IV) и Ь-тиро-зин (V) восстановительным аминированием через префеновую кислоту (III). В свою очередь эти аминокислоты служат исходными веществами ( аминокислотная совокупность ) для ферментативного синтеза фенилпропаноидных соединений (путь коричной кислоты), который приводит через активированные производные ко- [c.104]

    Оксигеназы играют важную роль в процессах биосинтеза, деградации и трансформации клеточных метаболитов ароматических аминокислот, липидов, сахаров, порфиринов, витаминов. Субстратами, на которые воздействуют оксигеназы, часто служат сильно восстановленные не растворимые в воде соединения их окисление приводит к тому, что продукты реакции становятся более растворимыми в воде и, следовательно, биологически активными, что важно для их последующего метаболизирования. У строго анаэробных прокариот кислород, включаемый в молекулу субстрата, происходит не из О2, а из других соединений, например воды. [c.347]

    Структурное звено фенилэтиламина, присущее изохинолиновым алкалоидам, присутствует также в ароматических аминокислотах— фенилаланине и тирозине, которые являются предшественниками в биосинтезе алкалоидов [43]. Этот вопрос исследовали многие ученые, в том числе Винтерштейн и Трайер, Робинсон и Бартон. Выделение и установление строения этих алкалоидов представляет собой одно из крупнейших достижений органической химии. Данное краткое описание некоторых алкалоидов ряда изохинолина преследует цель показать, как эти исследования способствовали развитию органической химии в целом и, в частности химии гетероциклических соединений. [c.281]

    Тот факт, что биосинтез ароматических аминокислот идет через шикимовую кислоту, позволяет предполагать, что шикимовая кислота служит предшественником лигнина. Опыты с подкормкой растений меченой шикимовой кислотой показали, что она действительно является предшественником лигнина и что при превращении ее в лигнин не происходит никакой перегруппировки углеродных атомов. Дальнейшие опыты с подкормкой показали, что и у голосеменных, и у покрытосеменных растений предшественником лигнина служит фенилаланин, а у злаков и сложноцветных (Сошроз -1ае) предшественником лигнина является, кроме того, тирозин. Фермент, дезаминирующий фенилаланин, обнаружен у бобовых, [c.439]

    Огромное значение в выяснении механизма биосинтеза ароматических аминокислот имели использованные Дэвисом так называемые ауксотрофные мутанты, т. е. мутанты с биосинтетической недостаточностью. У таких мутантов блокирована одна из реакций в цени биосинтеза и они способны накапливать в культуральной жидкости субстрат этой реакции в значительных количествах (Davis, 1955b, с). Дэвис получил мутант Е. соИ 83-24, у которого блокирована реакция, ведущая от шикимовой кислоты к ароматическим соединениям. Из этого мутанта им была выделена и идентифицирована шикимовая кислота (Davis, 1951). [c.150]

    Схемы регуляции при разветвленных путях биосинтеза. Регуляция образования ферментов, участвующих в разветвленных путях биосинтеза, очень сложна. Примерами могут служить системы, синтезирующие семейство ароматических аминокислот , семейство аспарагиновой кислоты и семейство пировиноградной кислоты (см. рис. 7.17). Очевидно, что каждый конечный продукт может репрессировать образование ферментов только специфического пути биосинтеза. Ферменты, находящиеся перед местом разветвления путей, подвержены репрессии всеми конечными продуктами, действующими одновременно (мультива-лентная репрессия). Синтез этих ферментов подавляется лишь тогда, когда в питательной среде присутствуют все конечные продукты если же добавлять их по отдельности, они такого эффекта не оказывают. [c.478]

    Накопленный к настоящему времени материал свидетельствует о том, что, за исключением завершающих этапов, в биосинтезе фенольных соединений используются общебиологические механизмы основного обмена веществ. Превращения углеводов в гликолизе и пентозофосфатном цикле служат источником 4- и 3-углеродных фрагментов, которые используются затем для образования ароматических аминокислот, органических кислот и, липидов. В свою очередь, жирнь е кислоты при р-окжслении дают ацетил-ЗКоА. [c.117]

    ДЛЯ роста на глюкозе нуждается в соединении X, то тогда можно представить себе путь биосинтетического процесса. Однако такие данные нужно интерпретировать с большой осторожностью. Так, ароматические аминокислоты, необходимые для роста мутантов АегоЬаЫег aerogen.es, могут быть заменены хинной или 5-дегидрохинной кислотой. Последняя, как теперь установлено, является промежуточным продуктом в биосинтезе [c.46]


Смотреть страницы где упоминается термин Ароматические аминокислоты, биосинтез: [c.138]    [c.392]    [c.405]    [c.543]    [c.569]    [c.625]    [c.686]    [c.711]    [c.719]    [c.203]    [c.398]    [c.430]    [c.445]    [c.110]    [c.151]    [c.492]    [c.221]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты ароматические

Ароматически аминокислоты



© 2025 chem21.info Реклама на сайте