Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки зависимость от субстратов

    Для аэробных бактерий также характерен процесс переноса электронов от NAD-зависимых субстратов на кислород и сопряженное с этим процессом фосфорилирование цитозольного ADP до АТР. Дегидрогеназы находятся в цитозоле бактериальной клетки, а переносчики электронов дыхательной цепи-в ее плазматической мембране, где локализуются также и механизмы сопряжения, генерирующие АТР. При переносе электронов бактериальные клетки тоже выкачивают ионы Н наружу. Это сходство в организации цепей переноса электронов (рис. 17-23) у бактерий и митохондрий служит дополнительным доводом в пользу той точки зрения, согласно которой [c.535]


    Интересная проблема возникает при рассмотрении дыхательного фосфорилирования в клетках бактерий. Здесь нативная система (интактные бактерии) должна характеризоваться величиной Р/0, равной 5 для НАД-зависимых субстратов при условии, что действует дыхательная цепь митохондриального типа. Однако расчет показывает, что при столь высокой эффективности начальный и средний сегменты дыхательной цепи должны работать с энергетическим дефицитом, т. е. выделяющейся энергии не может хватить на поддержание реальных величин АТФ/(АДФ-ЬФн), наблюдающихся в клетке. Одним из путей решения этого парадокса может быть предположение о том, что бактериальная Н+-АТФ-синтаза переносит не два (как это предполагают для митохондрий), а три иона Н+ на каждый синтезированный АТФ. [c.102]

    Процессы биохимического синтеза происходят со значительным выделением тепла. Так, в процессах выращивания биомассы микроорганизмов величина удельного тепловыделения а на 1 кг биомассы дрожжей, кДж/кг (величина а изменяется в зависимости от соотношения энергетического и конструктивного обмена в клетках) [18] для различных углеродсодержащих субстратов составляет меласса — а = 9,8-10 этанол — а = 22,0-10 н-парафин 9 = 26,0-10 метанол — а9 = 34,0 10 метан — 9 = 67,0-10 . [c.31]

    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]


    Кроме этого в бактериальных клетках имеются ферменты, количества которых могут резко меняться в зависимости от состава питательных веществ среды. Это происходит в результате того, что гены, детерминирующие эти ферменты, включаются или выключаются по мере надобности. Их называют индуцибельны-м и. При отсутствии в среде субстратов этих ферментов последние содержатся в клетке в следовых количествах. Если в среду добавить вещество, служащее субстратом определенного фермента, происходит быстрый синтез этого фермента в клетке, т.е. имеет место индукция синтеза фермента. Если же в питательной среде в готовом виде содержится вещество, являющееся конечным продуктом какого-либо биосинтетического пути, происходит быстрое прекращение синтеза ферментов этого пути. Это явление получило название репрессии конечным продуктом. Ферменты, синтез которых подавляется конечным продуктом, могут быть дерепрессированы, т. е. скорость их синтеза превысит обычную, если концентрация конечного продукта упадет до очень низкого уровня. Дерепрессия этих ферментов аналогична явлению индукции. [c.118]

    Характерна чрезвычайная быстрота размножения бактерий. Деление бактериальной клетки происходит каждые 20—30 мин, поэтому потомство одной клетки через 12 час может достигнуть нескольких миллионов. Скорость размножения бактерий значительно меняется в зависимости от условий существования. При развитии бактерий на каком-нибудь питательном субстрате их рост подчиняется определенной закономерности. [c.117]

    Исследования А. Н. Белозерского и А. С. Спирина с бактериями показали, что наряду с общим несоответствием нуклеотидного состава РНК и ДНК имеется вполне определенная положительная корреляция состава суммарной РНК клетки с составом ДНК, хотя изменение состава РНК в зависимости от состава ДНК оказалось очень малым. Эти исследования позволили Белозерскому и Спирину еще в 1957 г. предположить, что некоторая часть РНК клетки может в полной мере коррелировать по своему составу с составом ДНК, а в 1959—1960 гг. они установили, что часть РНК, коррелирующая с ДНК, является связующим звеном б переносе наследственной информации от ДНК к другим клеточным субстратам и к белкам в частности. Специфический синтез больщей части РНК, наоборот, может не быть под непосредственным контролем-ДНК - В 1960—1961 гг. сразу в нескольких лабораториях была выделена РНК, соответствующая по составу ДНК, изучены ее свойства и выделены ферментные препараты, катализирующие ее синтез. [c.279]

    Источники энергии. В зависимости от механизма преобразования энергии в доступную для клетки биохимическую форму (АТР) различают два главных типа метаболизма-фототрофный и хемотрофный. Организмы, способные использовать в качестве источника энергии для роста электромагнитное излучение (свет), называют фототрофными (фотосинтезирующими). К фототрофным организмам относятся представители двух больших групп анаэробные фототрофные бактерий, не выделяющие молекулярного кислорода, и аэробные фототрофные цианобактерии, водоросли и зеленые растения, которые на свету выделяют кислород. В отличие от этого хемотрофными (хемосинтезирующими) называют организмы, получающие энергию в результате окислительновосстановительных реакций с участием субстратов, которые служат для них источником питания,- безразлично, связано ли превращение энергии [c.184]

    Вода является субстратом фотосинтеза, но не это определяет зависимость интенсивности фотосинтеза наземных растений от содержаиия воды в клетках. Обезвоживание влияет на фотосинтез не прямым, а косвенным путем, изменяя структуру фотосинтетического аппарата. [c.122]

    В этом случае содержание биомассы X определяется скоростью разведения О, максимальной удельной скоростью роста лт И начальной концентрацией лимитирующего субстрата Со X равно О, когда О достигает (Хт- Это последнее обстоятельство, рассматриваемое как вымывание, накладывает серьезные ограничения на возможность ведения непрерывного процесса в системе, содержащей свободные клетки. В системах с иммобилизованными клетками заметно изменяется зависимость содер- [c.181]

    Общий тип реакции переноса (водорода, фосфатной группы, аминогруппы и т. д.) определяется активной группой, а специфичность по отнощению к данному субстрату — природой белкового носителя. Таким образом, клетка экономит активные группы и одна и та же группа — кофермент в зависимости от вида белковой части каталитической системы может производить определенную операцию, например отнимать водород от десятков различных субстратов. [c.55]

    Основным морфолого-функциональным субстратом иммунной системы являются малые лимфоциты — мигрирующие клетки, разделяемые на несколько популяций, но имеющие общего предшественника — стволовую клетку. Молодые лимфобласты мигрируют из костного мозга в различные лимфоидные органы и в зависимости от микроокружения заселяемых ими тканей образуют соответствующую популяцию. [c.7]

    Таким образом, для описания роста микробной популяции в замкнутой системе (в условиях периодического культивирования), представляющего достаточно сложный процесс перехода субстрата питательной среды в организованную биомассу популяции, предложены различные математические выражения. При этом подавляющее число зависимостей относятся только к фазам увеличения численности особей популяции. Их выбор осуществляется на основе внешнего сходства описываемых кривых с экспериментальным, после чего проводятся биологические аналогии и поиски физического смысла рассчитываемых параметров. Однако приведенные выше уравнения представляют собой только аппроксимационные подходы к более или менее точному описанию феноменологии процесса нарастания численности без отражения его главной стороны — перехода компонентов питательной среды в биомассу популяции (но не отдельной клетки). Математическое описание процессов микробиологического синтеза можно считать только собственно моделированием тогда, когда в рассмотрение принимаются, по крайней мере, оба [c.53]


    К этому выводу также склоняется Поуэлл, считающий, что реакция цельной живой микробной клетки на соответствующий субстрат представляет собой достаточно сложный процесс, а уравнение Моно может рассматриваться как дающее очень грубое эмпирическое определение связи и S [91]. Кроме того, согласно теории кинетики открытых систем, каковыми являются клетки по отношению к окружающей среде, прямая пропорциональная зависимость между концентрацией субстрата вне и внутри клетки может иметь место в редких случаях [108, 109], а как правило, характеризуется достаточно сложными кинетическими закономерностями. [c.81]

    Учитывая активность микроорганизмов и ее изменения в зависимости от условий среды, на ЭВМ можно имитировать все наблюдаемые в экспериментах особенности изменения концентрации неорганических и органических соединений азота, а также реконструировать динамику биомассы микроорганизмов. Результаты моделирования выявляют чрезвычайно высокую окислительную активность хемоавтотрофов. Очень низкая доля субстрата, включающегося в компоненты клетки (5% и ниже от трансформированного), возможно, свидетельствует об активности внеклеточных ферментов. [c.160]

    В зависимости от природы и реакционной способности об-разуюи иеся свободные радикалы будут реагировать с растворителем (такие активные радикалы, как СНз-), димеризоваться или атаковать реакционноспособный субстрат. Невозможность уловить некоторые активные свободные радикалы с помощью чувствительных к ним веществ привела к предположению о действии клеточного эффекта окруженные молекулами растворителя свободные радикалы не могут диффундировать через так называемую клетку растворителя. Это было подробно показано Хэммондом и другими [c.52]

    Известно больщое число ферментов со < сложной негиперболичес-кой кинетикой. Одна из причин отклонения от кинетики Михаэлиса— Ментен может быть связана с аллостерическими свойствами фермента. Для регуляторных ферментов кривая зависимости скорости реакции от концентрации субстрата часто имеет сигмоидальную форму. При наличии 5-образности резкое увеличение активности происходит в узкой области концентрации субстрата, что может иметь важное значение для функционирования фермента в клетке. В аллостерической регуляции ферментативной активности принимают участие не только [c.214]

    Фермент широко распространен в тканях млекопитающих и представлен двумя изозимами, пространственно разобщенными в клетке. Один изозим локализован в цитозоле, другой связан с митохондриальной фракцией. Изозимы существенно различаются по аминокислотному составу, физико-химическим свойствам, зависимости активности от pH среды и, что особенно важно с физиологической точки зрения, по кинетическим свойствам. Различное сродство к субстратам реакции ставит изозимы фермента в разные условия в отношении доступности субстратов прямой и обратной реакций. Этим определяется бифункциональность поведения аспартатаминотрансферазы в печени реакция, катализируемая митохондриальным изозимом, может быть сдвинута от состояния равновесия в сторону образования а-кетоглутарата, и поэтому может быть связана с функционированием цикла Кребса и цикла мочевины. Наоборот, цитоплазматический изозим способствует образованию щавелевоуксусной кислоты, т. е. связан с функционированием глюконеогенеза. [c.351]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    Дефектные и чужеродные белки деградируют в клетке при участии АТФ-зависимой системы протеолиза. У эукариот (все организмы, кроме ба> терий и синезеленых водорослей) эта система включает низкомол. белок убикитин, образующий с белками-субстратами конъюгат, и протеазы, расщепляющие этот конъюгат. [c.113]

    Зависимость продуктивности процесса по биомассе ж = х5 отд (основной управляющей переменной) имеет экстремальный характер с максимумом при S = дт,. При значениях a <. 5 скорость щзоцесса ограничивается недостатком субстрата, а при a > - подводом кислорода к клеткам, вследствие недостаточного времени пребывания жидкой фазы в аппарате. При возрастании интенсивности массопередачи к а (увеличении скорости подачи воздуха или числа оборотов мешалки) значение скорости протока унимодально возрастает, максимальная продуктивность также растет до насыщения. [c.183]

    Почему клетки продуцируют изоферменты Прежде всего ферменты с различающимися кинетическими свойствами необходимы для выполнения функций, меняющихся со временем или в зависимости от условий [69]. Так, концентрация субстрата может сильно варьировать от ткани к ткани такие же различия существуют между митохондриями, ядром и цитоплазмой клетки, а также на разных стадиях развития организма. В случае лакгатдегидрогеназы изофермент 1 ингибируется избытком пирувата — продуктом катализируемого этим ферментом окисления лактата  [c.67]

    Периодическое добавление субстрата к растущей культуре рекомбинантных микроорганизмов продлевает экспоненциальную фазу и отсрочивает наступление стационарной фазы, во время которой инициируются клеточные ответы на стрессовые воздействия, происходит синтез протеиназ и другие изменения метаболизма, уменьшающие выход рекомбинантного белка. Для поддержания метаболизма клетки-хозяина количество добавляемого субстрата необходимо постоянно увеличивать. Чтобы обеспечить непрерывный синтез рекомбинантного белка и его стабильность, нужно тщательно контролировать процесс и добавлять субстрат (источник углерода и азота вместе с микроэлементами) сразу, как только в этом возникнет нсобходмость. В зависимости от генотипа микроорганизма и природы рекомбинантного белка при периодической ферментации с добавлением субстрата выход продукта может возрасти на 25-1000 % по сравнению с простой периодической ферментацией. [c.353]

    В зависимости от места их участия в реакции ферменты подразделяют на эндоферменты, действующие внутри клетки и управляющие процессами внутреннего метаболизма, и э к з о -ферменты, выделяемые клеткой с целью разрушения нерастворимого субстрата до растворимых продуктов, способных диффундировать через клеточную мембрану. Более подробные сведения [c.300]

    Плазматические мембраны нейронов и мембраны некоторых не нейрональных клеток содержат специфические рецепторы (рецепторы ЫОР), которые связывают N0 вначале с низким, а затем с высоким сродством. Было показано, что рецепторы с высоким сродством образуют кластеры и вместе со связанным ЫОР попадают в клетку при эндоцитозе и транспортируются внутри клетки частично к лизосомам (где происходит их деградация), частично к ядру. При их поглощении нервным окончанием рецептор и ЫОР переносятся путем ретроградного аксонального транспорта. Подобные процессы могут происходить и при других типах гормональной регуляции и поэтому КОР служит своеобразной моделью гормонов и факторов роста. Механизм действия ЫОР в клетке не изучен. В ответ на действие ЫОР наблюдалось фосфорилирование белка и поэтому было постулировано участие в этом процессе сАМР-зависимой протеинкиназы. Идентифицировано несколько субстратов КОР-активированного фосфорилирования (среди них тирозингидроксилаза, рибосомальный белок 56, гистоны Н1 и НЗ и не-гистонные ядерные белки), но не показана связь между этими процессами и физиологической функцией МОР. [c.326]

    В порядок Beggiatoales объединены нитчатые формы. Нити эластичны и способны к скользящему движению. Разделение на роды осуществляется в зависимости от способности откладывать или нет в клетке гранулы серы при росте в присутствии сульфида (рис. 45, 1, 2). Сходной морфологией обладают бактерии рода Leu othrix. Они образуют длинные нити, состоящие из овальных или цилиндрических клеток. Нити обычно прикреплены к субстрату и неподвижны (рис. 45, 3). Размножаются с помощью одиночных подвижных клеток, выходящих из нити. Во многих отношениях напоминают нитчатые цианобактерии, отличаясь отсутствием фотосинтетических пигментов. [c.178]

    В то же время получены экспериментальные доказательства использования эритробактерами энергии света установлено обратимое фотоокисление бактериохлорофилла а реакционного центра, показано светозависимое включение СО2 и повышение уровня АТФ в клетке установлена способность мембранных препаратов к фотофосфорилированию. Однако фотосинтетический аппарат, имеющийся в клетках Егу1кгоЬас1вг, не может обеспечить их рост. Облигатная зависимость от молекулярного кислорода связана с тем, что для эритробактеров основным источником энергии служит 02-зависимое дыхание. Фотосинтетическая активность может иметь значение для поддержания жизнеспособности клеток в отсутствие в среде субстратов, обеспечивающих рост. [c.302]

    Тремя главными матричными процессами, присущими всем без исключения живым организмам, являются репликация ДНК, транскрипция и трансляция. Репликация ДНК происходит с участием ферментов ДНК-полимераз. Роль матриц играют разделенные цепи двунитевой материнской ДНК. Субстратами являются дезоксирибонуклеозид-5 -трифосфаты. Транскрипция осуществляется с помощью ферментов РНК-полимераз. Матрицей служит одна из нитей двунитевой ДНК, а субстратами — рибонуклеозид-5 -трифосфаты. Трансляция происходит на рибосомах с участием информационной РНК (мРНК) в качестве матрицы и аминоз1Ц1л-тРНК в качестве субстратов. Кроме того, при заражении клеток вирусами, у которых наследственная информация содержится в молекулах вирусных РНК, в клетках начинается запрограммированный этими РНК синтез ферментов, называемых обычно РНК-репликазами, которые катализируют биосинтез РНК, используя в качестве матриц молекулы РНК. Некоторые вирусы, вызывающие злокачественные новообразования, содержат ферменты, катализирующие обратную транскрипцию — синтез ДНК с использованием в качестве матриц молекул РНК. Эти ферменты часто называют обратными транскриптазами или ревертазами. Более строгие названия двух последних групп ферментов соответственно — РНК-зависимая РНК-полимераза и РНК-зависимая ДНК полимераза. [c.174]

    Выбор метода вьщеления и очистки ферментов микроорганизмов различны и определяются в зависимости от локализации (в клетках фермент или s вульгу-рапьиой среде) и целями применения. Неочищенные ферментные препараты получают путем сущки и размельчения мицелия фиба вместе с твердым субстратом (отрубями, жомом и др,) или высушиванием продуцента вместе с культуральной жидкостью на распылительной сущилке. Высушенные препараты размалываются в порошок и в таком виде используются. Удельная ферментная активность таких препаратов невелика, но они дешевле и достаточно устойчивы при хранении. Таким способом получают амилазы, протеазы, целлюлазы для сельского хозяйства и некоторых отраслей промышленности. [c.57]

    Хромосомная инженерия — ветвь генетической инженерии Объектами ее являются хромосомы клеток прокариот и эукариот Донорами хромосом могут быть различные суспензионные и субстрат-зависимые клеточные линии Из клеток прокариот хромосому (ДНК) выделяют из супернатанта после центрифугирования дезинтеграта или лизата клеток (протопластов) Клетки эукариот блокируют на стадии мейоза, хромосомы выделяют, применяя "гипотонический шок" и гомогенизацию с последующей очисткой их дифференциальным центрифугированием Хромосомы осаждают на поверхности реципиентных клеток хлоридом кальция и через несколько часов клетки обрабатывают реагентом — "перфоратором" (например, глицерином) Реципиентные клетки могут содержать донорный материал в широком диапазоне (встроенным в геном, изолированно) [c.184]

    Понятно, что при использовании определенных аспектов теории роста бактерий влиянием многих из этих факторов можно пренебречь. К сожалению, данных, описывающих реальные процессы, в частности кинетических констант, недостаточно и всеобъемлющая модель, учитывающая большую часть перечисленных факторов, еще не построена. Тем не менее некоторые из них были исследованы. Например, Хамер с сотр. изучал зависимость процесса флокулообразования при наличии рециркуляции биомассы от жизнеспособности клеток [156, 157, наличия или отсутствия взаимодействия между клетками [158, смерти, лизиса и скрытого роста [159—161], влияния температуры и потребления в качестве субстрата твердых частиц [162], субстратов смешанного состава [163] и проявлений биологической активности в отстойниках [164], но эти подходы представляют собой только верхушку айсберга . [c.116]

    Хотя в случае твердых частиц носителя использование пористых частиц подразумевает способность организма колонизировать частицу, содержание биомассы легко регулируется и в реакторах с барботажем, содержащих такие частицы. Пока клетки находятся в порах, избыточная биомасса, накапливающаяся благодаря клеточному росту снаружи частицы, легко удаляется при трении частиц друг о друга и о стенки реактора. В случае гифомицетов требуется значительное усилие для удаления избыточной биомассы, в этом случае для создания необходимого трения используется промывание насадки сильной струей жидкости. Для тех условий, при которых частицы не заполняются биомассой, содержание последней может быть функцией концентрации субстрата в реакторе и регулируется скоростью диффузии в частицу и из нее [369]. В ЧНБ из полиуретана содержание биомассы также зависит от размера пор [343], но эта зависимость высоко видоспецифична, поэтому отсутствуют общие правила подбора размера пор. [c.186]

    Известны и другие ферментные системы, которые, подобно системе ацетилхолинэстераз радужной форели, акклимированной к 12 °С, состоят одновременно из нескольких изоферментов с различной зависимостью Ки от температуры. Одна из таких систем — изоцитратдегидрогеназа радужной форели. Оказалось, что в популяции можно обнаружить ряд фенотипов, различающихся по этому ферменту, причем влияние температуры на катализируемую им реакцию в большой мере зависит от количественных соотношений между содержанием различных изоферментов в клетках (рис. 91). У особей, имеющих только изофермент Аг, не обнаруживается положительной температурной модуляции, тогда как у особей, обладающих помимо изофермента кг также изоферментами В2 и Сг, отмечается компенсаторное уменьшение сродства фермента к субстрату при температурах выше 10 °С. Можно думать, что особи, имеющие все три изофермента, получают некоторое преимущество, так как активность изоцитратдегидрогеназы не будет у них подвержена таким резким колебаниям в летний период, как у особей, обладающих только изоферментом Аг. У последних, возможно, существует какой-то иной путь регуляции активности этого фермента при изменчивых летних температурах. [c.281]

    При использовании в качестве субстратов для выращивания липидообразующих дрожжей гидролизных сред большое значение имеет подготовка гидролизата. Исследование различных способов нейтрализации гидролизатов (двухступенчатая нейтрализация, нейтрализация известковым молоком и 25%-ным раствором аммиака) показало зависимость скорости синтеза липидов от способа нейтрализации и связанного с ним соотношения углерода и азота в среде. Так, при соотношении N С, равном 1 6, в клетках микроорганизма накапливается до 31,1% белка, содержание липидов составляет 21,7%. При изменении соотношения М С до 1 40 происходит перераспределение направлений биосинтеза, в этом случае образуется до 35,7% липидов и только 15,0% белка. Таким образом, наиболее эффективным способом нейтрализации в данном случае является двухступенчатая нейтрализация, включающая на первой стадии нейтрализацию известковым молоком (до pH 4,0), на второй стадии — 25%-ным раствором аммиака (до pH 6,0). Экономический коэффициент в этих условиях составляет 60,6%, жировой — 15,6%. [c.351]

    Третий уровень регуляции —генетический контроль, определяющий скорость синтеза ферментов. Скорость метаболического процесса зависит от концентрации активной формы каждого фермента, а она определяется соотношением скоростей синтеза и распада фермента. Скорость синтеза фермента сильно варьирует в зависимости от условий. Ферменты, которые всегда присутствуют в клетке в более или менее постоянных количествах, называются конститутивными. Ферменты, синтезирующиеся в ответ на появление в среде соответствующего субстрата, называются адаптивными, или индуцибельными. Гены, контролирующие синтез адаптивных ферментов, обычно находятся в состоянии репрессии и дерепреСсируются только при наличии индуктора. Иногда происходит репрессия или индукция одновременно целой группы, ферментов, что связано с закодированием этой группы ферментов в ДНК набором последовательно расположенных генов — опероном. Все гены, входящие в состав данного оперона, репрессируются и дерепрессируются одновременно, или координированно. [c.124]


Смотреть страницы где упоминается термин Клетки зависимость от субстратов: [c.32]    [c.639]    [c.77]    [c.97]    [c.112]    [c.173]    [c.48]    [c.52]    [c.378]    [c.257]    [c.35]    [c.473]    [c.223]    [c.373]    [c.262]    [c.360]   
Культура животных клеток Методы (1989) -- [ c.56 , c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2025 chem21.info Реклама на сайте