Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов горячим поташным раствором

    Кроме экономии пара, очистка горячим раствором поташа имеет и другие преимущества. Процессы абсорбционной очистки обычно связаны с необходимостью охлаждения конвертированного газа, который в дальнейшем вновь должен нагреваться (например, при последующем метанировании), поэтому в случае очистки поташным раствором уменьшается расход воды на охлаждение конвертированного газа, а также частично отпадает ее расход на охлаждение растворителя. Кроме того, снижаются затраты на абсорбент (по сравнению с моноэтаноламиновой очисткой). Капитальные затраты снижаются главным образом за счет уменьшения поверхности теплообменной аппаратуры. [c.251]


Рис. 5.10. Схема поташного процесса очистки газа от СОд (горячим раствором карбоната калия). Вариант с разделенным потоком. Рис. 5.10. <a href="/info/125859">Схема поташного</a> <a href="/info/28419">процесса очистки газа</a> от СОд (горячим <a href="/info/158381">раствором карбоната калия</a>). Вариант с разделенным потоком.
    Высокотемпературная некаталитическая конверсия метана нашла применение при переработке как природного газа, так и попутных газов нефтедобычи (схемы 5 и 6). Газ, получаемый этим методом, содержит сажу, очистка от которой предшествует дальнейшей переработке технологического газа. Для этой цели его промывают горячей водой под давлением. После двухступенчатой конверсии окиси углерода на среднетемпературном катализаторе газ очищают от двуокиси углерода путем воднощелочной промывки (схема 5) или при помощи горячего поташного раствора, активированного мышьяком (схема 6). [c.11]

    Данные но экономике очистки газов с высокой концентрацией СО2 растворами моноэтаноламина и диэтаноламина приводятся в гл. пятой, где рассматривается также очистка газов горячим раствором карбоната калия (поташный метод). Эти данные показывают, что обычные растворы аминов не могут конкурировать с горячими растворами поташа, хотя и пригодны для последней ступени очистки газа после извлечения из него основной массы СО2 горячими растворами поташа или водной абсорбцией. [c.24]

    Процесс очистки газа с применением горячего раствора карбоната калия (поташный метод очистки) был разработан Горным Бюро США в Брю-стоне, Пенсильвания, в ходе исследований по синтезу жидких углеводородов из угля. Очистка газа от СО2 изучалась с целью удешевления очистки синтез-газа и создания такого процесса, в котором возможно полнее использовалось бы состояние и свойства синтез-газа высокое парциальное давление СОг и высокая температура газа. На рис. 5. 10 представлена технологическая схема промышленной установки поташной очистки. Процесс очистки газа с применением горячего раствора карбоната калия подробно описан в ряде работ [36, 37]. [c.103]


    Однии из распространенных методов очистки водородсодержащего газа от двуокиси углерода при производстве водорода является ыетод горячей поташной очистки, основанный на обратимой хемо-сорбции двуокиси углерода растворами карбоната калия [I]. К преимуществам этого метода, по сравнению с моноэтаноламиновой очисткой, относят высокую химическую и термическую стойкость абсорбента, возможность осуществления абсорбции и десорбции при одинаковой температуре, исключая затраты на теплообменную аппаратуру, более низкий удельный расход пара на регенерацию абсорбента, меньшую коррозионную активность рабочей среды. Однако, в отличие от моноэтаноламиновой очистки, поташный метод имеет ограничения по глубине извлечения двуокиси- углерода из газового потока, но разработанные в последнее время модификации процессов, включающие в состав хемосорбента различные активирующие добавки [2,3], способствуют устранению в некоторой степени этих недостатков. Усовершенствованием метода горячей поташной очистки является организация процесса по многопоточным схемам [4]. [c.94]

    Об1щя оценка очистки газа растворами карбонатов и МЭА. Из рассмотренных процессов модно сделать вывод, что очистка газов от горячими растворами поташа имеет ряд положительных особенностей, позволяющих существенно снизить расход тепла. При моноэтаноламиновой очистке 40-60 тепла расходуется на подогрев раствора вследствие недорекуперации в теплообменниках. При очистке растворами поташа расход тепла на нагрев раствора значительно меньше.Кроме того, при моноэтаноламиновой очистке 25-30 тепла расходуется на разложение соединений МЭА с. При поташной очистке эта величина умень- [c.229]

    Для ускорения расчетов по горячей поташной очистке газов построены 153] многочисленные номограммы а) давление двуокиси углерода над растворами поташа в зависимости от концентрации раствора и содержания абсорбированной двуокиси углерода б) равновесное давление водяного пара над растворами поташа в зависимости от концентрации раствора, содержания абсорбированной двуокиси углерода и температуры в) плотность растворов поташа в зависимости от температуры, концентрации карбоната и степени превращения в бикарбонат, г) растворимость поташа как функция температуры и степени превращения в бикарбонат. [c.102]

    Принципиальная схема установки для очистки конвертированного газа горячим мышьяково-поташным раствором показана на рис. IV- . [c.199]

    Процесс горячей поташной очистки имеет также серьезные недостатки. Основной из них — сильная коррозия оборудования. В качестве ингибитора коррозии применяется бихромат калия добавляемый в количестве 3 г л. При наличии в газе сероводорода расход ингибитора значительно возрастает вследствие взаимодействия с ним сероводорода. Таким образом, несмотря на принципиальную возможность одновременной очистки газа от сероводорода и двуокиси углерода практически процесс применим только для отмывки СОг- Большие трудности вызывает также эрозия оборудования (особенно насосов) при пересыщении раствора. Для борьбы с эрозией раствор фильтруют на хлопковых фильтрах -, а задвижки промываются конденсатом, присоединяемым затем к раствору. [c.182]

    Водный аммиак иногда применяют для очистки синтез-газов от двуокиси углерода. Наиболее известным примером такого процесса является очистка водорода, используемого для синтеза аммиака. Ряд таких установок работает в Европе, а недавно в США пущена установка очистки коксового газа, также действующая по этому же принципу. Этот процесс экономически наиболее целесообразно использовать для очистки частично обессеренных коксовых газов с относительно низким содержанием двуокиси углерода, но он пригоден также для очистки синтез-газов, содеря.ащих около 30% двуокиси углерода. Сравнивали экономику извлечения СО семью различными сочетаниями таких процессов очистки газа, как горячим раствором карбоната калия (поташный метод), этаноламиповыми и аммиачными растворами и водной промывкой газа [25]. Проведенный анализ показывал, что комбинированная очистка газа с извлечением основного количества двуокиси углерода (с 34 до 2% СОз) горячим раствором карбоната калия с последующей очисткой газа водным аммиачным раствором (с 2 до 0,015% СОд) и окончательной промывкой газа едким натром (до содержания 0,001—0,002% СОд) значительно более экономична, чем очисп а газа от СО2 только водным амми- [c.82]

    Процесс очистки газа горячим раствором карбоната калия (поташный метод) разработан Горным Бюро США в Брюстоне, Пенсильвания, в ходе [c.99]


    Водные аммиачные растворы иногда применяют для очистки синтез-газов от двуокиси углерода. Наиболее известным примером такого процесса является, вероятно, очистка водорода, используемого для синтеза аммиака. Ряд таких установок работает в Европе, а недавно в США пущена установка очистки коксового газа, также действующая но этому же принципу. Этот процесс, очевидно, экономически наиболее целесообразно использовать для очистки частично обессеренных коксовых газов с относительно низким содержанием двуокиси углерода, но он пригоден также для очистки синтез-газов, содержащих около 30% двуокиси углерода. В литературе сравнивается экономика извлечения СОг семью различными сочетаниями таких процессов очистки газа, как горячим раствором карбоната калия (поташный метод), этаноламиновыми и аммиачными растворами и водной промывкой газа [25]. Проведенный анализ экономики процесса показывает, что комбинированная очистка газа с извлечением основного количества двуокиси углерода (с 34 до 2% СОа) горячим раствором карбоната калия с последующей очисткой газа водным аммиачным раствором (с 2 до 0,015% СОа) и окончательной промывкой газа едким натром (до содержания 0,001—0,0()2% СОг) значительно более экономична, чем очистка газа от СОг только водным аммиачным раствором (со снижением содержания СОа с 34 до 0,015%) с последующей окончательной промывкой газа едким натром. В табл. 4. 6 приводятся экономические показатели обоих вариантов процесса очистки. Более [c.84]

    На новых водородных установках значительно более высокой производительности процесс ковверсив ведется под повышенны дав-леииен, причем в схеме использован целый ряд прогрессивных решений (двухступенчатая конверсия окиси углерода использование тепла конденсации водяных паров, содержащихся в газе после второй ступени конверсии окиси углерода, для регенерации поташного раствора очистка от углекислоты раствором горячего поташа мега-нирование остаточной окиси углерода и др.), в результате чего достигнуты высокие технико-экономические показатели. [c.40]

    Процесс горячей поташной очистки был разработан на опытной станции Горнорудного бюро США в Брюстоне, шт. Пенсильвания, главным образом для удаления двуокиси углерода из синтез-газа [65, 66]. Хотя абсорбция двуокиси углерода горячими растворами по-таи] а применялась уже давно [58, 618], исследования, проводившиеся в Горнорудном бюро, привели к разработке промышленного процесса [61, 94, 95, 434, 576]. Большое внимание уделялось экономике удаления двуокиси углерода из газовых смесей [162, 163, 305, 415]. В последующем горячий поташный процесс был использован для удаления сероводорода и двуокиси углерода из различных промышленных газов [62—64, 131, 164, 182, 200, 201, 237, 241, 362, 423, 574, 589, 631]. [c.353]

    В схеме № 1 используется одноступенчатая очистка 15—20%-ным раствором МЭА, конечная концентрация СОг 0,001 %. В схеме № 2 применяется очистка 20—25%-ным раствором ДЭА конечная концентрация СОа 0,02%. В схеме № 3 газ при 138° С обрабатывается 30—40%-ным раствором К2СО3, причем содержание СОа снижается до 2%. Затем газ охлаждается до 38° С и поступает в МЭА-абсорбер. В схеме № 4 после горячей поташной очистки содержание СОа составляет менее 2%, после днэтаноламиновой очистки концентрация СОа уменьшается до 0,02%. В схеме № 5 водная очистка проводится в насадочном скруббере, где содержание СО2 понижается до 2%. Десорбция ведется при атмосферном давлении. В турбине регенерируется около 60% энергии, затрачиваемой на циркуляцию воды. [c.210]

    Проблема создания высокопроизводительных водородных установок ставит одной из своих ак-туалъных задач разработку эффектшзных методов очистки технологических газов от двуокиси углерода. С точки зрения практического применения наибольший интерес в этом отношении представляет задача усовершенствования существующих,став-шлх классическими способов очистки, таких как очистка водой под давлением, водными растворами этаноламинов и промывка горячем раствором карбоната калия. Целесообразность и основные принципиальные решения данного направления выявлены при исследовании технологии поташного метода очистки, разработанной фирмой Лурги и осуществленной на Уфимском нефтеперерабатывающем заводе им. ХХП съезда КПСС. Анализ работы установки показал, что задача уссвершенствова- [c.155]


Смотреть страницы где упоминается термин Очистка газов горячим поташным раствором: [c.188]    [c.188]   
Очистка технологических газов (1977) -- [ c.278 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы газов



© 2024 chem21.info Реклама на сайте