Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов карбонатом калия, растворами

Рис. 5.10. Схема поташного процесса очистки газа от СОд (горячим раствором карбоната калия). Вариант с разделенным потоком. Рис. 5.10. <a href="/info/125859">Схема поташного</a> <a href="/info/28419">процесса очистки газа</a> от СОд (горячим <a href="/info/158381">раствором карбоната калия</a>). Вариант с разделенным потоком.

    Данные но экономике очистки газов с высокой концентрацией СО2 растворами моноэтаноламина и диэтаноламина приводятся в гл. пятой, где рассматривается также очистка газов горячим раствором карбоната калия (поташный метод). Эти данные показывают, что обычные растворы аминов не могут конкурировать с горячими растворами поташа, хотя и пригодны для последней ступени очистки газа после извлечения из него основной массы СО2 горячими растворами поташа или водной абсорбцией. [c.24]

    Очистку газа от двуокиси углерода горячим раствором карбоната калия [5—7] (горячим раствором поташа) применяют на большинстве современных установок для производства водорода, работаюпщх при давлении 1,2—3,0 МПа. Ведение процесса позволяет обойтись без затраты дополнительного пара за счет тепла, имеющегося в газе-после конверсии окиси углерода. Температуры абсорбции и регенерации близки между собой, т. е. процесс проводят без громоздких теплообменников и расход охлаждающей воды сравнительно мал. Перечисленные преимущества обусловили широкое применение этого метода очистки. [c.119]

Рис. 111-40. Схема процесса очистки газа от СО 2 горячим раствором карбоната калия (вариант с разделенным потоком) Рис. 111-40. <a href="/info/746519">Схема процесса очистки</a> газа от СО 2 горячим <a href="/info/158381">раствором карбоната калия</a> (вариант с разделенным потоком)
    ОЧИСТКА ГАЗА ГОРЯЧИМИ РАСТВОРАМИ КАРБОНАТА КАЛИЯ [c.279]

    До последнего времени промышленное применение находила очистка газа от СОг растворами карбоната калия, активированного различными металлами. Данный процесс основан на абсорбции СОг водными растворами карбонатов калия или натрия, содержащими активирующие добавки поливалентных металлов (Аз, 8е, Те, 8Ь) или циклических органических соединений. В промышленности наибольшее распространение в качестве таких активирующих добавок получили соединения мышьяка, вводимые в растворы, как правило, в виде мышьяковистого ангидрида, концентрация которого в растворе составляет около 150 г/л А гОз. [c.35]

    Давление в абсорбере должно быть высоким (2 МПа и более), поскольку реакции смещаются вправо в соответствии с парциальным давлением кислых газов. При регенерации раствора реакции протекают в обратном направлении. При отсутствии СО2 бисульфид калия очень трудно регенерировать, поэтому процессы с горячим карбонатом калия не рекомендуются для очистки газов с очень низким содержанием диоксида углерода. [c.176]


    В табл. 5.5 приведены типичные эксплуатационные данные для абсорбера с ситчатыми тарелками промышленной установки очистки газа горячим раствором карбоната калия [44]. К сожалению, в работе не сообщается число тарелок в абсорбере, а поэтому на основании имеющихся данных нельзя рассчитать к. п. д. тарелки. Но так как установлено, что определяющим фактором процесса является сопротивление жидкостной пленки, то можно ожидать, что к. п. д. тарелки довольно низок. Результаты работы других установок показали, что к. п. д. тарелки (к. п. д. для пара по Мэрфри) при абсорбции СО2 горячими растворами карбоната калия составляет примерно 5%. [c.104]

    Утилизация оксида углерода (IV) в производстве воздушной извести экономически целесообразна потому, что газ обжиговых печей содержит до 30% оксида углерода, что при значительном объеме производства воздушной извести позволяет получить значительное количество ценного побочного продукта. Для этой цели обжиговый газ после очистки обрабатывают раствором карбоната калия, поглощающим оксид углерода  [c.315]

    Активный уголь получают из органических материалов (древесины, кости, сахара, крови, ореховой скорлупы) путем пропитывания раствором хлорида цинка (И) или карбоната калия и последующего нагревания при недостатке воздуха. Содержит огромное количество пор и поэтому обладает очень большой поверхностью (1 г угля имеет поверхность 800 м=), вследствие чего обладает очень высокой способностью адсорбировать многие газы и растворенные вещества. Применяют для очистки, разделения и извлечения различных веществ, например для извлечения бензола из светильного газа, ксилола из отходов текстильных печатных паст, дисульфида углерода из отходов производства вискозного волокна, растворителей из отходов лакокрасочной промышленности, для обесцвечивания паточного сиропа, для очистки этанола от [c.314]

    Растворы карбонатов натрия и калия широко используются для абсорбции СОз из дымовых газов в производстве сухого льда [3, 4]. Этот процесс нельзя отнести к процессам очистки газа, так как в этом случае извлечение [c.86]

    Возможность использования карбоната калия для очистки газа от СО2 известна уже давно. В германском патенте, выданном еще в 1904 г., описывался процесс абсорбции СО2 горячим раствором карбоната калия с последующей десорбцией снижением давления без дополнительного нагрева [381. В результате изучения скорости абсорбции СО3 горячим раствором карбоната калия, проведенного в 1924 г. [39], было показано, что при повышении температуры с 25 до 75° С скорость абсорбции резко увеличивается. Исследования Горного Бюро США привели к созданию экономичного промышленного процесса одна из особенностей этого процесса была запатентована [c.99]

    Если в какой-либо точке системы происходит охлаждение раствора, то даже концентрация 30% карбоната калия может оказаться слишком высокой. На основании опыта промышленной очистки природного газа ма- [c.100]

    В результате обширных опытных работ, проведенных Горным Бюро США [36, 37], получены необходимые данные для расчета и проектирования установок очистки газа горячим раствором карбоната калия опубликованы данные о работе промышленной установки [44. Имеются сведения о результатах двух серий испытаний, проведенных в полузаводском масштабе. В одной серии опытов [36] абсорбер представлял собой стальную трубу диаметром 100 мм, заполненную на высоту около 2,7 м насадкой из 13-миллиметровых колец Рашига, а регенератор — трубу диаметром 150 мм, заполненную такой же насадкой, но на высоту 1,5 м. Во второй серии опытов [37] абсорбер был изготовлен из толстостенной трубы диаметром 150 мм и был заполнен насадкой из 13-миллиметровых фарфоровых колец Рашига на высоту 9 л , а регенератор — из трубы диаметром 200 мм и был заполнен на высоту 7,5 ж кольцами Рашига. Вследствие соответствующей изоляции и применения паровых спутников тепловые потери на обеих опытных установках были значительно уменьшены. [c.102]

    Однии из распространенных методов очистки водородсодержащего газа от двуокиси углерода при производстве водорода является ыетод горячей поташной очистки, основанный на обратимой хемо-сорбции двуокиси углерода растворами карбоната калия [I]. К преимуществам этого метода, по сравнению с моноэтаноламиновой очисткой, относят высокую химическую и термическую стойкость абсорбента, возможность осуществления абсорбции и десорбции при одинаковой температуре, исключая затраты на теплообменную аппаратуру, более низкий удельный расход пара на регенерацию абсорбента, меньшую коррозионную активность рабочей среды. Однако, в отличие от моноэтаноламиновой очистки, поташный метод имеет ограничения по глубине извлечения двуокиси- углерода из газового потока, но разработанные в последнее время модификации процессов, включающие в состав хемосорбента различные активирующие добавки [2,3], способствуют устранению в некоторой степени этих недостатков. Усовершенствованием метода горячей поташной очистки является организация процесса по многопоточным схемам [4]. [c.94]


    Так как процесс очистки газа горячим раствором карбоната калия основывается главным образом на различии в растворимости СОа при высоком и низком парциальных давлениях (условия работы соответственно в абсорбере и в отпарной колонне), и можно предполагать, что эффективность процесса [c.105]

    На установках очистки газа горячим раствором карбоната калия приходилось сталкиваться с явлениями захлебывания и провала жидкости в абсорбере. Эту трудность, по-видимому, можно устранить применением кремнийорганических противопенных присадок. Считают [48], что противо-пенная присадка, улучшая процесс барботажа, значительно увеличивает к. п. д. колпачковых и ситчатых абсорберов. [c.106]

    Затем удаляют СО2, пропуская реакционную смесь через горячий раствор карбоната калия под давлением и, наконец, проводят окончательную очистку водорода от оставшегося СО и других газов (см. 15.3). [c.265]

    Водный аммиак иногда применяют для очистки синтез-газов от двуокиси углерода. Наиболее известным примером такого процесса является очистка водорода, используемого для синтеза аммиака. Ряд таких установок работает в Европе, а недавно в США пущена установка очистки коксового газа, также действующая по этому же принципу. Этот процесс экономически наиболее целесообразно использовать для очистки частично обессеренных коксовых газов с относительно низким содержанием двуокиси углерода, но он пригоден также для очистки синтез-газов, содеря.ащих около 30% двуокиси углерода. Сравнивали экономику извлечения СО семью различными сочетаниями таких процессов очистки газа, как горячим раствором карбоната калия (поташный метод), этаноламиповыми и аммиачными растворами и водной промывкой газа [25]. Проведенный анализ показывал, что комбинированная очистка газа с извлечением основного количества двуокиси углерода (с 34 до 2% СОз) горячим раствором карбоната калия с последующей очисткой газа водным аммиачным раствором (с 2 до 0,015% СОд) и окончательной промывкой газа едким натром (до содержания 0,001—0,002% СОд) значительно более экономична, чем очисп а газа от СО2 только водным амми- [c.82]

    Основные преимущества очистки газа водным аммиачным раствором — низкая стоимость поглотительного раствора и высокая эффективность процесса, практически не зависящие от присутствия в газе сероокиси углерода, сероуглерода и относительно малых количеств Нз8 и H N. Основным недостатком процесса является несколько агрессивный характер карбонизированного раствора (особенно при значительном содержании цианистого водорода в газе), что требует изгото-влевия аппаратуры для регенерации раствора из специальных конструкционных материалов, и некоторое усложнение схемы по сравнению со схемами очистки газа горячим раствором карбоната калия или этаноламинами. [c.83]

    Водные аммиачные растворы иногда применяют для очистки синтез-газов от двуокиси углерода. Наиболее известным примером такого процесса является, вероятно, очистка водорода, используемого для синтеза аммиака. Ряд таких установок работает в Европе, а недавно в США пущена установка очистки коксового газа, также действующая но этому же принципу. Этот процесс, очевидно, экономически наиболее целесообразно использовать для очистки частично обессеренных коксовых газов с относительно низким содержанием двуокиси углерода, но он пригоден также для очистки синтез-газов, содержащих около 30% двуокиси углерода. В литературе сравнивается экономика извлечения СОг семью различными сочетаниями таких процессов очистки газа, как горячим раствором карбоната калия (поташный метод), этаноламиновыми и аммиачными растворами и водной промывкой газа [25]. Проведенный анализ экономики процесса показывает, что комбинированная очистка газа с извлечением основного количества двуокиси углерода (с 34 до 2% СОа) горячим раствором карбоната калия с последующей очисткой газа водным аммиачным раствором (с 2 до 0,015% СОа) и окончательной промывкой газа едким натром (до содержания 0,001—0,0()2% СОг) значительно более экономична, чем очистка газа от СОг только водным аммиачным раствором (со снижением содержания СОа с 34 до 0,015%) с последующей окончательной промывкой газа едким натром. В табл. 4. 6 приводятся экономические показатели обоих вариантов процесса очистки. Более [c.84]

    Установка состоит из следующих секций подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель) паровой конверсии (печь паровой конверсии и паровой котел-утилизатор) конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии) очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. VI-4. [c.62]

    Абсорбция НаЗ и СОа этаноламипами целесообразна, когда концентрация этих примесей в газе не превышает 2—2,5 мол. %. При более высоких концентрациях выгодно применение таких дешевых абсорбентов, как вода или водные растворы карбонатов натрия (Г а СОз) или калия (К2СО3) — поташа. Подобные абсорбенты обычно используют для предварительной очистки газов с доведением концентрации Н З и СО до 2—2,5 мол. %, а окончательная их очистка от Н38 и СО2 осуществляется этаноламипами. [c.162]

    Режим регенерации следующий. При снижении давления из раствора выделяется от /3 до /3 растворенной в нем двуокиси углерода и одновременно испаряется вода. На испарение воды и выделение СОа из раствора расходуется тепло. Для удаления оставшейся двуокиси углерода требуется довести парциальное давление СО2 над раствором до 0,014 МПа. Последнее достигается за счет дополнительного испарения воды из раствора при нагревании регенерированного раствора в кипятильнике. Температуру в регенераторе поддерживают выше 100 °С, так как температура кипения раствора К2СО3 при атмосферном давлении существенно выше температуры кипения воды. Связанная в бикарбонат двуокись углерода еще более повышает температуру кипения раствора. При более глубокой очистке газа растет расход пара на регенерацию. Расход пара также растет и с понижением парциального давления СОа в исходном газе. Горячий раствор карбоната калия обладает коррозионными свойствами, поэтому в раствор добавляют ингибиторы коррозии (0,1— 0,3% КаСгаО, или ааВ40, ЮНаО). Кроме того, в раствор вводят и кремнийорганические противопенные присадки. [c.121]

    Нд рис. 38 показана схема комбинированного процесса очистки газа горячим раствором карбоната калия и раствором диэтаноламина [111. Эта схема позволяет получить газ после очистки с содержанием не более 0,1% Og и снизить эксплуатационные расходы на 10% по сравнению с двухступенчатой карбонатной очисткой. К процессам очистки от СО2 горячим раствором К2СО3 с активизирующими добавками относится и процесс карбосоль-ван [12]. [c.122]

    Проблема создания высокопроизводительных водородных установок ставит одной из своих ак-туалъных задач разработку эффектшзных методов очистки технологических газов от двуокиси углерода. С точки зрения практического применения наибольший интерес в этом отношении представляет задача усовершенствования существующих,став-шлх классическими способов очистки, таких как очистка водой под давлением, водными растворами этаноламинов и промывка горячем раствором карбоната калия. Целесообразность и основные принципиальные решения данного направления выявлены при исследовании технологии поташного метода очистки, разработанной фирмой Лурги и осуществленной на Уфимском нефтеперерабатывающем заводе им. ХХП съезда КПСС. Анализ работы установки показал, что задача уссвершенствова- [c.155]

    На вторичный реформинг подается воздуха на 30-50% больше, чем это требуется для получения азотоводородной смеси в соотношении и =3 1, необходимом для синтеза аммиака. Температура на выходе из шахтного реактора около 900°С. Полученный газ проходит двухступенчатую конверсию окиси углерода в аппаратах 6 и 7 и поступает в абсорбер 8 для очистки от СО2 раствором карбоната калия или органическими растворителями. Затем газ подогревается до 320°С и поступает в метанатор 10. После охлаждения водой и хладоагентом газовый поток проходит через осушители II, заполненные цеолитами. Затем газ, состоящий из 60-70%, 30 40, 2-3% и 0,5% [c.257]

    Реакцию целесообразно проводить в колбе с пришлифованной газоотводной трубкой, нижний конец которой заполнен слоем стеклянной ваты для улавливания увлекаемых N2O паров кис-лоты. 8 г амидосерной кислоты нагревают в колбе с 20 см прокипяченной 73%-ной HNO3 на небольшом пламени горелки до начала выделения газа. При слишком бурном прохождении реакции необходимо охлаждать колбу. Для очистки выделяющегося газа от примесей его последовательно пропускают над твердым карбонатом калия, через промывную склянку с концентрированным раствором сульфата железа(П) (для удаления N0) и раствор КОН (1 1). [c.596]

    В настоящее время поглощение HoS растворами карбонатов производится при десорбции паром, причем процесс ведут в вакууме (вакуум-карбонатный метод), так как при атмосферном давлении требуется большой расход пара [61. Вакуум-карбонатный метод пригоден при наличии в газах различных примесей ( OS, О2, H N и др.) и получил большое распространение главным образом для очистки коксового газа коррозия аппаратуры незначительна. Недостатки метода—невысокая степень очистки (около 90%) и накопление вредных сточных вод, содержащих сернистые, роданистые и цианистые соли. Применение К2СО3 (вместо Naj Og) имеет некоторые преимущества, так как вследствие более высокой растворимости карбоната калия можно использовать более концентрированные растворы (примерно 20% К2СО3), обладающие большей поглотительной способностью. [c.681]

    Такой раствор, обладая щелочной реакцией, абсорбирует HgS и СО2 (и другие кислые газы), и вследствие буферного действия присутствующей в исходном растворе слабой кислоты pH раствора не будет резко меняться ио мере абсорбции кислых газов. Для подобных процессов очистки газа предложены карбонат, фосфат, борат и фенолят натрия или калия, а также соли слабых органических кислот. В последующих разделах главы описы-)заются наиболее важные промышленные процессы очистки газа, основанные на использовании таких растворов. [c.85]

    Экономика процесса. Хотя применение схем с разделенным потоком в процессе очистки газа горячим раствором карбоната калпя позволяет получать низкие концентрации СОа очищенном газе, вероятно, экономически наиболее целесообразно использовать этот процесс для извлечения из газа основной массы содержащейся в нем СОа тех случаях, когда не требуется высокая степень очистки газа или когда для доочистки можно использовать другие процессы. В одной из опубликованных работ [49 приводите я подробный анализ экономики различных методов очистки от СОа газа, применяемого для синтеза аммиака. Рассмотрено семь различных схем, в трех из которых применялась очистка горячим раствором карбоната калия в сочетании с другими процессами окончательной очистки газа. Результаты этого анализа представлены в табл. 5.6. Из семи рассмотренных схем наименьшие капиталовложения требуются для процесса очистки горячим раствором карбоната калия с последующим извлечением остаточной СО 2 водным раствором моноэтаноламина. Эта схема и схема водной промывки газа с дальнейшей очисткой его водным раствором МЭА требуют и минимальных эксплуатационных расходов. Однако последние лишь немного меньше эксплуатационных расходов, требуемых при процессах очистки горячим раствором карбоната калия с последующей промывкой газа диэтаноламином и едким натром или водным раствором аммиака и едким натром. Последние две схемы сравнительно сложны, но преимущество их состоит в том, что они пригодны для очистки газов, содержащих OS и другие примеси, препятствующие применению ыоноэтаноламина дая окончательного извлечения СОа- Сравнение экономики процессов очистки газа горячим раствором карбоната калия и раствором моноэтаноламина [50] также выявляет преимущества первого процесса для очистки газов с высоким содержанием СОа- Из этого же сравнения видно, что оба процесса становятся равноценными при парциальном абсолютном давлении СОа около 1,4 ат. При меньшем давлении СОа процесс очистки газа раствором амина более экономичен, чем процесс очистки горячим раствором карбоната калия, а при более высоком парциальном давлении СОа — наоборот. [c.108]

    Если предложенны11 механизм процесса правилен и скорость абсорбции двуокиси углерода определяется химической реакцией, а не диффузией, то, вероятно, можно найти тако катализатор, повышающий скоросттэ реакции, а следовательно, и коэффициент абсорбции. И, действительно, изучение влияния различных добавок к растворам карбонатов калия и натрия на процесс абсорбции показало, что некоторые добавки оказывают такое действие. Исследование многочисленных добавок, в том числе глицерина, глюкозы, сахарозы, этиленгликоля, фруктозы, метилового и этилового спирта, формальдегида и лактозы, позволило установить, что многие из этих добавок заметно повышают скорость абсорбции СОд растворами карбоната натрия [1, 2]. Например, добавление 1% сахарозы более чем вдвое увеличивает скорость абсорбции СОа- Единственным известным промышленным процессом очистки газа, в котором для увеличения скорости абсорбции и десорбции СОз применяются различные добавки, является процесс Джаммарко-Ветро-кок, кратко описываемый ниже в настоящей главе. [c.86]

    Процесс очистки газа горячим раствором карбоната калия (поташный метод) разработан Горным Бюро США в Брюстоне, Пенсильвания, в ходе [c.99]

    На рис. 5.11 показано влияние температуры и степени превращения карбоната калия в бикарбонат на растворимость солей в системе карбонат — бикарбонат калия [36, 41—43]. Линии на графике показывают условия начала выпадения кристаллов бикарбоната калия при различных концентрациях карбоната калия. Например, при температуре 115° С и 60%-ном растворе можно получить без образования осадка раствор, содержащий только юколо 30% бикарбоната. При растворе с 50% карбоната калия в бикарбонат можно превратить 50%, а при 40%-ном растворе теоретически можно превратить 100%. На основании этих данных сделан вывод, что эквивалентная концентрация карбоната калия 40%, которую можно использовать для очистки газа без опасности выпадения бикарбоната, является максимальной, а в большинстве случаев целесообразно применять растворы расчетной кон- цептрацией карбоната калия 30%. [c.100]

    Ограниченное число опытов было проведено по одновременной абсорбции СО2 и НаЗ [37]. Результаты этих опытов приведены в табл. 5.4, из которой видно, что эффективность извлечения НаЗ лишь немного больше полноты извлечения СО 2- В этом данный процесс отличается от других процессов очистки газа растворами солей щелочных металлов, которые обычно характеризуются высокой избирательностью по отношению к НаЗ. Одной из причин видимого отсутствия избирательности раствора является, по-видимому, тот факт, что выбор конструкции и условий работы абсорбера определялся стремлением получить максимальную степень извлечения СОа-При проведении же нроцесса очистки горячим раствором карбоната калия с меньшей полнотой извлечения СО2 возможно достигалась бы большая избирательность раствора по отношению к Н23. Применение высоких температур несомненно несколько у1 еличпвает скорость реакции СОа растворе, а поскольку именно эта стадия лимитирует общую скорость абсорбции СОа и определяет избирательность раствора по отношению к Н23, то избирательность этого процесса неизбежно будет ниже, чем других процессов [c.103]

    Добавка активатора значительно увеличивает скорость абсорбции и десорбции СОз, поэтому для такого процесса требуются абсорбер и отпарная колонна гораздо меньших размеров, чем при обычном процессе очистки горячим раствором карбоната калия. Как сообщают, регенерация арсеиитных растворов протекает легче и прп более низкой температуре, поэтому расход пара на регенерацию снижается. Можно также проводить регенерацию раствора под давлением, что позволяет снизить затраты на последующее сжатие СОа- Вследствие высокой скорости процесса абсорбции и полной отпарки раствора при процессе Джаммарко можно получить газ с очень низким остаточным содержанием двуокиси углерода [52]. [c.109]

    В тех случаях, когда примеси двуокиси углерода или сероводорода составляют значительную часть суммарного газового потока, расходы на очистку могут оказаться чрезмерно высокими по сравнению со стоимостью очищенного газа. Как указывалось в гл. пятой (см. табл. 5.8), для очистки газа, содержащего 31,3% двуокиси углерода, обычный процесс абсорбции моноэтаноламином при давлении 24,5 ат неэкономичен. В таких случаях значительно более рационально применять двухступенчатый процесс с использованием водной или поташной очистки на первой ступени и моноэтаноламина — на второй. Основным фактором, ухудшающим экономические показатели очистки растворами этаноламина при высоком содержании кислых комионентов в газе, является чрезмерно высокий расход тепла на отпарку ноглотительного раствора в связи с необходимостью разложить химическое соединение, образовавшееся прп абсорбции. Хотя абсорбция карбонатом калия иногда более экономична, этот процесс также требует большого рас- [c.380]

    Охлаждение и очистка газов в системе мокрого вывода при-садки (поташа) в установках с МГД-генератором [36]. Пенный аппарат используется в качестве первой предварительной ступени очистки. 0 представляет собой колонну диаметром 1400 мм с тремя провальными тарелками — тарелки толщиной 5 мм имеют диаметр отверстий 6 мм со свободным сечеиием 0,25 В верхней части аппарата встроен инерционный каплеуловитель для сепарации, капель, выносимых газом из аппарата. Продукты сго1рания (газы) поступают с температурой 150—250° С в нижнюю часть пенного аппарата, тарелки которого орошаются 0,1- 20%-иым раствором К2СО3. Концентрация карбоната калия на входе в amaipaT составляет 5—7 г/нм . [c.126]

    Впервые вакумный карбонатный процесс был осуществлен в промышленном масштабе в Германии в 1938 г. в качестве поглотителя применяли растворы карбоната калия, но на аналогичных установках в США применяли растворы карбоната натрия. Этот процесс использовался главным образом для очистки коксового газа [329] и очень ограниченно для очистки природных или нефтезаводских газов [132, 470]. [c.353]


Смотреть страницы где упоминается термин Очистка газов карбонатом калия, растворами: [c.163]    [c.512]    [c.27]    [c.83]    [c.90]    [c.100]    [c.268]   
Справочник азотчика Издание 2 (1986) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Калий карбонат

Очистка газа горячими растворами карбоната калия

Очистка газа горячими растворами карбоната калия, активированными диэтаноламином

Растворы газов

калия, раствор



© 2024 chem21.info Реклама на сайте