Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические схемы переработки газа методом

    В книге освещены теоретические основы процессов переработки природных и нефтяных газов и газового конденсата. Даны сведения об аппаратуре, технологических схемах и машинных методах проектирования газоперерабатывающих заводов. [c.2]

    Задание на контроль и автоматизацию процесса. Отличительной особенностью современной технологии переработки нефти является высокая степень автоматизации всех процессов. Поэтому разработка технологической схемы тесно связана- с выбором методов контроля и регулирования производственных процессов. Ос- новными регулируемыми параметрами технологических процессов являются температура, давление, расход жидкости или газа, уровень жидкости в сосуде, вязкость, углеводородный или фракционный состав продуктов. Объектами, в которых поддерживаются перечисленные параметры, служат ректификационные колонны, теплообменники, емкости, газосепараторы, трубчатые печи, насосы, компрессоры. Для автоматического управления процессами применяются различные схемы, однако в основном они состоят из сравнительно небольшого числа элементов, которые повторяются в различных комбинациях. [c.81]


    ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПЕРЕРАБОТКИ ГАЗА МЕТОДОМ НИЗКОТЕМПЕРАТУРНОЙ КОНДЕНСАЦИИ [c.167]

    В настоящей главе даются алгоритмы расчета основных технологических схем переработки газа, показаны общие принципы и особенности их расчета на основе приведенных алгоритмов можно составить алгоритм расчета любой схемы переработки газа методом НТК, НТА, НТР. В качестве примера даны алгоритмы расчета схем одноступенчатой НТК одноступенчатой НТК с предварительной деэтанизацией НТР с двумя вводами сырья в колонну. При расчете схем используют рассмотренные выше математические модули элементарных процессов, аппаратов и узлов, комбинацией которых можно получить практически любую схему переработки газа. [c.314]

    Технологическая схема переработки концентрированного сернистого газа зависит от метода его получения. Если газ получают при очистке топочных газов или газов цветной металлургии, в схеме отсутствуют печное и промывное отделения, так как газ очищается от пыли и вредных примесей в процессе извлечения 502. При этом схема получения контактной серной кислоты очень компактна. Если концентрированный газ получают путем обжига сырья с кислородом, используется обычная схема (см. рис. 1У-1), по которой в контактном отделении применяют особые приемы с целью предотвращения перегрева катализатора. [c.98]

    При расчете технологических схем переработки нефтяных газов по методу низкотемпературной абсорбции рекомендуется следующий выбор давления сходимости. [c.61]

    В настоящем разделе описаны в доступной форме алгоритмы расчета всех основных узлов и процессов, из которых складываются технологические схемы переработки газа. Указанными алгоритмами можно пользоваться и при ручных, и при машинных расчетах. По некоторым процессам приведены алгоритмы упрощенных, приближенных расчетов, а также алгоритмы точных расчетов, которые могут быть осуществлены только на ЭВМ. Более простые методы расчетов используют обычно для предварительной оценки процесса. [c.269]

    Отмеченные выше особенности переработки газа методом двойного контактирования необходимо учитывать при определении оптимальной концентрации ЗОг и разработке технологической схемы процесса. [c.70]

    К настоящему времени разработаны и внедрены в промышленность разнообразные технологические схемы производства карбамида, различающиеся условиями синтеза (температура, давление, соотношение исходных реагентов) и методами переработки и возвращения в цикл газов дистилляции. В промышленности применяются системы без рециркуляции газов дистилляции и с частичной или полной рециркуляцией их. [c.362]


    В последнее время в США наблюдается тенденция к применению детандерных установок в схемах переработки нефтяного газа по методу НТК с извлечением углеводородов только Сз и выше. Ниже приводится технологическая схема переработки нефтяного газа с содержанием около 300 г/м этих углеводородов [ 14]. [c.25]

    Для извлечения фтора из отходящих газов, образующихся при производстве комплексных и сложно-смешанных удобрений, необходимо применение более совершенных методов и приемов по сравнению с очисткой газов, например, в производстве простого суперфосфата, где фтор присутствует в высоких концентрациях. Расширение областей применения фтора (ядерная энергетика, пластмассы, моторные топлива, фреоны, стекло, керамика, цветная и черная металлургия и т. д.) ставит перед промышленностью минеральных удобрений задачу увеличения выхода фтора с единицы фосфатного сырья в полезно используемые продукты. Ниже рассматриваются конкретные технологические схемы извлечения фтористых соединений из отходящих газов производства удобрений, которые внедрены в производство или прошли полупромышленные испытания, либо являются разработками сегодняшнего дня, а затем процессы переработки кремнефтористоводородной кислоты как одного из основных продуктов, получаемых в результате абсорбционной очистки газов. [c.84]

    Даны типовые методы расчета процессов переработки нефти и газа, основы выбора технологических схем, режимов и конструктивного их оформления, а также обоснование выбора оптимальных проектных решений. Приведены алгоритмы и программы расчета на ЭВМ физических и химических процессов нефтепереработки. Изложены методы расчета процессов, обеспечивающих охрану окружающей среды. [c.2]

    В книге освещены теоретические основы технологических процессов переработки природного и нефтяного газа и конденсата, приведены данные о сырьевой базе, перспективном развитии и размещении предприятий газо-переработки. Даны сведения об аппаратуре газоперерабатывающих заводов, о типизированных технологических схемах и использовании в них автоматизированных систем управления, а также машинных методов проектирования газоперерабатывающих заводов. [c.256]

    В последнее время в США наблюдается тенденция применения детандерных установок в схемах переработки нефтяного газа по методу НТК и при извлечении только Сз+высшие- Ниже приводится технологическая схема для переработки нефтяного газа с содержанием Сз+высшие 300 г/м с извлечением 90% Сз (рис. П1.41) [811. [c.187]

    Несмотря на все многообразие технологического оформления процесса переработки нефтяных и природных газов методом низкотемпературной конденсации, все эти процессы состоят практически из одних и тех же основных узлов. Общими, обязательными для любой схемы НТК являются узлы сепарации газа на входе в технологическую схему от капельной жидкости и механических частиц компримирование газа осушка газа каскад регенеративных теплообменников для использования в схеме холода и тепла технологических потоков холодильный цикл сепаратор-разделитель узел деметанизации и этановой колонны (для схем, в которых товарным продуктом является этан и высшие) или узел деэтанизации конденсата (для схем, в которых товарным продуктом является пропан и высшие). [c.194]

    Общие принципы и технологические схемы осущки углеводородных газов и очистки их от сероводорода изложены в части I курса Технология переработки нефти и газа применительно к природным и попутным газам. Ниже упомянуты только те методы подготовки, которые свойственны заводским углеводородным газам. [c.275]

    Технологическая схема получения серы по методу Клауса описание которой дано в работе [1], приведена на рис. 15, а некоторые показатели работы установки моЩноСтью 30 тыс. т серы в год в расчете на 1 т товарной серы при переработке заводского газа с содержанием 90% сероводорода приведены ниже  [c.97]

    Технологическая схема переработки в аммиак природного газа предусматривает сжатие его до 4,5—4,9 МПа, очистку от сернистых соединений одним из известных методов (до содержания серы не выше 0,5-10 %), паровоздушную двухступенчатую конверсию природного газа (до остаточного содержания метана 0,3%), средне- и низкотемпературную конверсию оксида углерода [до его содержания 0,2—0,5% (об.)], отмывку конвертированного газа от диоксида углерода [до (10-2—10- )% в очищенном газе], метанирование остатков оксида и диоксида углерода [до их содержания (5н-- 10)10- %], сжатие азотоводородной смеси до давления 20,0 —32,0 МПа с промежуточным отбором части азотоводородной смеси на стадию сероочистки, собственно синтез аммиака и выделение его из циркуляционного газа. [c.112]


    Полученный химическими методами водород содержит различное количество таких примесей, как окись и двуокись углерода, азот, кислород, метан, сероводород, инертные газы и др., которые, как правило, должны быть удалены до поступления водорода на дальнейшую переработку. Поэтому современная технологическая схема производства водорода любым химическим методом включает не менее четырех основных стадий собственно получение водорода, конверсию окиси углерода, удаление двуокиси углерода и окончательную очистку газа от остальных примесей. Такие многоступенчатые схемы процесса довольно громоздки и требуют крупных капиталовложений и больших эксплуатационных расходов. [c.9]

    До последнего времени определение сернистых соединений в газах нефтепереработки чаще всего ограничивалось определением сероводорода или общей серы. В настоящее время в связи с разработкой и внедрением в технологические схемы нефтехимических процессов переработки нефти появилась настоятельная необходимость разработки новых методов исследования углеводородных газов, позволяющих количественно определять не только сероводород и меркаптаны, но и другие органические сернистые соединения, как, например, сульфиды, дисульфиды и др. [c.133]

    Снижение капиталовложений на сооружение объектов химических производств для переработки продуктов коксования. Решение этой задачи может способствовать значительному расширению коксования углей, как одного из важнейших методов их химической переработки и более эффективного использования. Между тем технология химических производств на базе коксования углей имеет ряд серьезных недостатков, влияющих на увеличение капиталовложений. К числу этих недостатков относится громоздкость технологических схем и аппаратуры вследствие больших объемов проходящего через них коксового газа (диаметр газопроводов достигает 1—1,5 м, диаметр скрубберов и другой аппаратуры 5—6 ж). Наряду с этим сравнительно небольшие заводы, с переработкой до 200 тыс. т химических продуктов коксования — небольшие сравнительно с нефтеперерабатывающими заводами, которые переходят от переработки с [c.94]

    Технологическая схема производства серной кислоты контактным методом из серы, содержащей мышьяк и селен (например, газовой серы), не отличается от схемы переработки колчедана (см. рис. 7-9). По другому оборудовано только печное отделение, в котором установлены соответствующие печи для сжигания серы, и отсутствуют сухие электрофильтры. Однако схема существенно изменяется при использовании природной серы, не содержащей мышьяка и селена. В этом случае не требуется специальной очистки обжигового газа и, следовательно, отпадает необходимость в его охлаждении и промывке. Поскольку основная масса серы, поступающей в качестве сырья для производства серной кислоты, не содержит Аз и Зе, ниже [c.214]

    Современные установки, в частности, нефтеперерабатывающих и нефтехимических производств характеризуются большим количеством элементов и связей между ними. Реальные технологические схемы занимают много места. В связи с отсутствием единой системы расположения линий схемы одних и тех же процессов изображаются различными способами. Множество пересечений линий затрудняет анализ системы. Традиционные схемы сложны для восприятия, а их изготовление требует значительных затрат рабочего времени. Практически невозможно изобразить единую технологическую схему сложных установок и комплексов. Мы встречаемся с необходимостью применения новой системы, определяющей порядок составления технологических схем установок и схем технологических потоков, Доклад посвящен теме изображения технологических схем производств переработки нефти и газа методом графических моделей. [c.245]

    В последнее время получают распространение термические методы обработки эмульсий. Так, во ВНИИ железнодорожного транспорта разработан метод обработки эмульсий в выпарной установке упрощенного типа, работающей за счет тепла отходящих топочных газов (t = 150--180°С). Действие установки основано на интенсивном испарении капелек жидкости, движущихся в потоке горячего газа, который одновременно распыляет и нагревает обрабатываемую жидкость. Длительные опыты показали, что остаток от выпаривания эмульсии имеет вид густого смазочного масла и содержит 20 % воды, около 80 % органических и 2—3 % минеральных веществ. Теплота сгорания остатков составляет 15 000-36 400 кДж/кг. Имеются данные об эффективном методе комплексной термической переработки СОЖ методом дистилляции с утилизацией водной и масляной части. По этой схеме отработанная эмульсия подается в регенеративный подогреватель, где нагревается до температуры, близкой 100°С. Затем она поступает в роторный пленочный испаритель со ступенчатой поверхностью нагрева. Обезвоженный маслосодержащий остаток собирают в сборнике и используют в дальнейшем как добавку к котельному топливу. Водяные пары охлаждают в конденсаторе, и в дальнейшем конденсат расходуют на приготовление новых партий СОЖ. Поскольку жесткость воды -- один ИЗ основных факторов, отрицательно влияющих на стабильность эмульсионных СОЖ и на их корродирующее действие, то использование парового конденсата, например при приготовлении СОЖ для прокатных станов, значительно улучшает все физико-химические и технологические показатели эмульсий. [c.275]

    Разработанная технологическая схема позволяет проверить, кроме метода разложения сернистым газом, и другие методы переработки отработанных растворов мышьяково-содовой очистки. [c.120]

    На основании полученных экспериментальных данных были разработаны две принципиальные технологические схемы переработки торфа в газ, моторное топливо и ценные химические соединения 1) путем комбинирования процессов термического растворения, жидкофазной гидрогенизации тяжелых продуктов растворения (шлама) и гидрогенизационной стабилизации бензина и 2) методом термического растворения и перегонки до кокса торфяных шламов. Процесс термического растворения твердых топлив был оформлен под руководством М. Л. Потарина Гипрогазтоп-промом Министерства нефтяной промышленности в виде технического и рабочего проектов олытно-промышленной установки производительностью, по торфо-масляной пасте, от 30 до 70 т в сутки. Схемы основных цехов установки термического растворения представлены на рис. 1 и 2. [c.270]

    Комплексная переработка воздуха, т. е. извлечение из него основных составляющих компонентов, является эффектииным средством удешевления тешологического кислорода. Представляет интерес рассмотреть вопросы получения аргона, криптона и -ксенона, так как потребности в неоне невелики и удовлетворяются даже при современном масштабе производства кислорода, а получение гелия из воздуха нецелесообразно его получают из природных газов методами глубокого охлаждения. Получение аргона и криптона связано с усложнением технологической схемы переработки воздуха и некоторыми дополнительными энергетическими затратами. До последнего времени получение аргона осуществлялось на установках небольшой производительности — до 1 ООО м /и кислорода такие установки обычно располагают значительными резервами (как по холодопроизводительности, так и по флегме), что позволяет сравнительно просто и легко осуществить отбор и переработку аргонной фракции. [c.21]

    Затраты на переработку сырой или топливной нефти в газообразное топливо относительно выще и включают в себя затраты по применению водорода в технологической схеме процесса, которая может быть легко модифицирована для производства как малосерни стых жидких топлив, так и ЗПГ. Одним нз очевидных методов снижения затрат по переделу при производстве газа является возмещение последних за счет реализации малосернистых чистых жидких топлив, получаемых параллельно с газом. Экономика производства ЗПГ на Энергетических нефтеперерабатывающих заводах , таким образом, может быть несколько более благоприятной по сравнению с заводом, на котором производится лишь один вид продукции — ЗПГ. [c.202]

    В целом каждая очередь завода представляет собой завершенный технологический цикл, внутри которого осуществляется переработка газа от исходного сырья, поступающего с промыслов, до товарных продуктов, направляемых потребителю. В качестве товарных могут получать продукты, которые направляются на другой завод для углубленной их переработки. На приведенной поточной схеме такими продуктами являются очищенный природный газ, часть которого направляют потребителю как товарный газ, а часть потока - на гелиевый завод с целью извлечения из него методами низкотемпературных конденсации и ректификации гелия, метановой и этановой фракций и ШФЛУ. Другой поток - стабильный конденсат -тоже реализуемый ОГПЗ как товарный продукт, направляется на Салаватнефтеоргсинтез для получения из него компонентов товарных моторных топлив. [c.178]

    В качестве примера практического применения сернокислотного метода переработки берилла на рис. 31 приведена технологическая схема производства гидроокиси бериллия, используемая фирмой Браш бериллиум . Активирование берилла перед сернокислотной обработкой производится по этой схеме термическим методом. Концентрат, предварительно нагретый, плавят при 1700°С. Плавы выливают в закалочную ванну с водой. Классификация на грохоте стекловидных агломератов, полученных при закалке, позволяет отделить куски размером более 13 мм, в которых возможна рекристаллизация (что затруднит последующее взаимодействие с серной кислотой). Эти куски направляются в начало процесса. Отсеянный спек подвергают термообработке при 900° во вращающейся печи. Затем его измельчают в шаровой мельнице, которая работает в замкнутом цикле с воздушным классификатором. Мокрое измельчение не применяется, чтобы при сульфатизации не разбавлять серную кислоту. Измельченный спек через дозатор поступает в железный аппарат предварительного смешения. Туда же поступает серная кислота (93%) в количестве, несколько превышающем то, которое необходимо для образования сульфатов бериллия и алюминия. Избыток серной кислоты нужен в дальнейшем для получения сульфата аммония при взаимодействии с аммиаком. Кислая пульпа впрыскивается тонкой непрерывной струей в стальной барабан, нагреваемый газом до 250—300°. Пульпа попадает на его раскаленные стенки. При этом почти мгновенно сульфатизируются ВеО и AI2O3. Полнота сульфатизации 93—95%. Такой метод значительно продуктивнее одновременной сульфатизации больших количеств окислов. Отходящие газы пропускают через циклон, где оседают тонкие [c.199]

    Несмотря на высокую эффективность удаления из заводских газов сероводорода и достаточную разработанность методов очистки, их применению на отдельных заводах, перерабатывающих сернистые нефти, уделяется недостаточное внимание. На 30% пз общего числа действуюпщх заводов установки для сероочистки газа имеют недостаточную мощность или находятся в стадии строительства. На ряде заводов они не включены в технологическую схему завода. Это обстоятельство приводит к перерасходу реагентов, применяемых для заще-лачивания сжиженных газов, получаемых при фракционировании неочищенных газов на ГФУ, повышенному загрязнению атмосферы сернистым ангидридом при сжигании сухих газов в трубчатых печах технологических установок и к интенсивной коррозии оборудования и коммуникаций, связанных с переработкой, транспортированием и сжиганием неочищенных газов. Это положение в ближайшие годы должно быть исправлено необходимые мощности очистных установок и установок получения серы должны быть созданы. [c.65]

    Усовершенствование техники, применяемой при первичной переработке попутного газа, и технологического процесса с целью увеличения степени извлечения из него ценных углеводородов, необходимых для нефтехимической промышленности, В связи с этим при переработке газа необходимо внедрять получившие распространение прогрессивные методы низкотемпературной ректификации и конденсации. Рекомендуется также применять холод при работе заводов по маслоабсорб-ционной схеме. Применение холода на маслоабсорбционных газобензиновых заводах даст возможность повысить глубину извлечения пропана примерно до 90% от его потенциального содержания в газе. [c.137]

    Книга посвящена технологии получения водорода для нефтеперерабатывающей и нефтехимической промышленности (методами паровой каталитической конверсии углеводородов, паро-кислородной газификации нефтяных остатков, расщепления углеводородов),, а также выделению водорода из водородсодержащих газов нефтепереработки и нефтехимии. Показана роль водорода в переработке нефти и в нефтехимических процессах, приведены требования к его качеству. Рассмотрены технологические схемы йроизводства описана основная аппаратура. Изложены особенности эксплуатации установок производства водорода дан технико-экономический анализ различных производственных схем. [c.159]

    Астраханском и Западносибирском газохимических комплексах (ГХК) и Сосногорском газоперераба-тьшающем заводе, на которые поступает сложный по составу газ ряда крупных газоконденсатных месторождений. На рис. 2.45 приведена блок-схема Оренбургского ГХК, перерабатьшающего газ Оренбургского месторождения. Товарной продукцией этого комплекса являются сухой и сжиженный газ, этан, конденсат, сера и i елий. В основе процесса переработки газа лежат физические методы низкотемпературной сепарации (конденсация паров вещества с понижением их температуры), абсорбции (избирательное поглощение газов или паров жидкими поглотителями-абсорбентами), адсорбции (поглощение вещества поверхностью твердого поглотителя-адсорбента) и др. Эти методы используются обычно в совмещенном технологическом режиме, определяя конструктивные особенности используемьк установок. [c.120]

    Герш С. Я., Разделение газов методом глубокого охлаждения, Москва, 1947. Гиистлинг А. М., Современные технологические схемы получения и переработки углеводородных газов, Москва, 1947. [c.197]

    Решение этих задач осуществляется одновременно по нескольким направлениям создание эффективных методов очистки промышленных выбросов комплексное использование сырья создание новых и совершенствование существующих технологических схем, применение новых видов сырья, позволяющих исключить или сократить технологические стадии, на которых образуется основное количество отходов разработка и создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов разработка рациональных методов утилизации уже накопившихся отходов. Одним из примеров комплексного использования сырья может быть разработанная в СССР комплексная переработка хибинских апатито-нефелиновых руд (рис. 1). При флотации этой руды получают апатитовый концентрат, являющийся сырьем для фосфорной промышленности, и нефелиновый концентрат (К,Na)20-Al203-2Si02. На 1 т апатитового концентрата получают 0,6—0,7 т нефелина. Апатитовый концентрат идет для получения фосфорной кислоты и фосфорных удобрений. Отходы этих производств — фосфогипс и фтористые газы — могут быть переработаны в цемент, серную кислоту и фтористые соли. [c.11]

    В этой системе наряду с использованием наиболее прогрессивных технологических и энерготехнологических процессов (сульфатизигующий обжиг колчедана в печах КСЦВ со скоростями газового потока выше второй критической скорости переработка огарков использование тепла реакций в ВТУ путем непосредственного получения электроэнергии применение короткой схемы переработки обжигового газа замена процесса абсорбции конденсацией паров серной кислоты озоно-каталитический метод очистки выхлопных газов и др.) должно быть применено наиболее совершенное, принципиально новое аппаратурное оформление системы. Должно быть разработано новое, эффективное по своему техническому решению оборудование конденсаторы, воздушные холодильники кислот, волокнистые фильтры, контактные аппараты, воздушные турбины, работающие на параметрах нагретого воздуха, определяемых режимом работы основных [c.101]

    Некоторые изменения в технологическом режиме обжига колчедана могут быть внесены в связи с необходимостью учитывать условия переработки пиритных огарков. При рассмотренном выше окислительном режиме обжига имеющиеся в колчедане примеси цветных и благородных металлов, а также мышьяк остаются в пиритных огарках. Для использования в металлургии огарки необходимо предварительно очищать от указанных примесей. Из реализованных в промышленном масштабе (за рубежом) схем переработки огарков наиболее полное извлечение цветных металлов обеспечивает метод хло-ридовозгонки. Однако по этому методу мышьяк не извлекается. Следовательно, если в пиритных концентратах содержится большое количество примесей цветных и благородных металлов, но малое (т. е. допустимое по нормам черной металлургии) количество мышьяка, целесообразны указанные схемы и режим обжига колчедана с переработкой огарков по схеме с хлоридовозгонкой. В этом случае переработка обжигового газа может быть осуществлена по схеме СО. [c.89]

    Блок-схема предприятия — это первая ступень в графическом описании связей в современных технологических производствах. Технологические блок-схемы современных предприятий сложны. Обычный порядок их построения и программные продукты, облегчающие их составление, дают графические изображения блок-схем, требующие много места. Связи между блоками образуют запутанную сеть линий, и проследить отдельные связи бывает довольно трудно. Составление такой схемы — работа трудоемкая. Результаты — невысокие извлечь информацию, заложенную в схеме, трудно, визуально определить систему связей — невозможно. Разобраться в такой схеме довольно сложно. Очевидно, что блок-схемы необходимо изображать новым способом. Доклад посвящен теме построения блок-схем предпрр1ятий химической переработки нефти и газа методом графических моделей. [c.244]

    Принципиальная технологическая схема извлечения газового бензина из попутного газа методом абсорбции показана на рис. 83. Подлежащий переработке и прошедший соответствующую тодготовку жирный газ компрессором 1 подается в низ абсорбера 3 под соответствующим давлением. В абсорбере газ проходит ряд колпач ковых или других тарелок, интевсивно барботи-руя через слой поглотителшо-го масла, всегда находящегося на определенном уровне на та- [c.176]


Смотреть страницы где упоминается термин Технологические схемы переработки газа методом: [c.2]    [c.472]    [c.232]    [c.633]    [c.7]   
Смотреть главы в:

Переработка нефтяных и природных газов -> Технологические схемы переработки газа методом




ПОИСК





Смотрите так же термины и статьи:

Схема газов

Схема технологического газа

Схемы в газе

Технологическая схема газов

методы переработки



© 2025 chem21.info Реклама на сайте