Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод как электрофил

    Далее электрофил - катион хлора взаимодействует с тс-электрона-ми бензола и присоединяется к одному из углеродов кольца - получается <т-комплекс. [c.166]

    При этом в качестве электрофильной частицы генерируется не катион, а нейтральный дихлоркарбен (79), в котором атом углерода имеет незаполненный внешний электронный уровень. Далее дихлоркарбен взаимодействует как электрофил с фенок-сид-ионом. Образовавшийся анион (79а) претерпевает перегруппировку, так как атом углерода, несущий полный отрицательный заряд, обладает сильноосновными свойствами, и отщепление протона от кольца сопровождается выигрышем энергии вследствие восстановления ароматической структуры. [c.395]


    Электрофильный реагент, обладающий вакантной орбиталью, атакует п-электронное облако, образуя л-комплекс. При этом система сопряжения в ядре не нарушается. Далее электрофил принимает пару электронов (из шести) и образует с одним из атомов углерода ядра ковалентную связь (о-комплекс). В о-комплексе один атом углерода пребывает [c.248]

    В любой ионной реакции, приводящей к образованию новой углерод-углеродной связи [979], один атом углерода выступает как нуклеофил, а другой — как электрофил. Поэтому отнесение любой реакции к нуклеофильному или электрофильному типу является вопросом традиции и часто основывается на аналогиях. И хотя реакции с 11-13 по 11-30 и с 12-14 по 12-18 не обсуждаются в этой главе, они представляют собой нуклеофильное замещение по отношению к одному из реагентов, но традиционно они классифицируются по другому реагенту. Аналогично все реакции этого раздела (от 10-87 до 10-116) можно назвать электрофильным замещением (ароматическим или алифатическим), если реагент рассматривать как субстрат. [c.186]

    Бимолекулярные механизмы реакций электрофильного алифатического замещения аналогичны механизму Sn2 в том от-нощении, что новая связь образуется, когда разрывается старая. Однако в механизме Sn2 входящая группа несет с собой пару электронов и эта орбиталь может перекрываться с орбиталью центрального атома углерода лишь в той степени, при которой уходящая группа отделяется со своими электронами, в противном случае у углерода было бы более восьми электронов на внешней оболочке. Поскольку электронные облака отталкиваются, входящая группа атакует молекулу субстрата с тыла под углом 180 к уходящей группе, так что при этом наблюдается обращение конфигурации. Если атакующей частицей является электрофил, несущий субстрату только вакантную орбиталь, такое рассмотрение неприменимо и невозможно заранее предсказать, с какой стороны должна происходить атака. Теоретически можно представить два главных направления атаки и соответственно два механизма Se2 (с фронта) и Se2 (с тыла) (заряды на схеме не показаны)  [c.408]

    Присоединение к двойной или тройной связи может происходить по четырем основным путям. Три из них представляют собой двустадийные процессы, в которых первая стадия — это атака нуклеофила, электрофила пли свободного радикала. Вторая стадия заключается в рекомбинации получающегося интермедиата соответственно с положительной, отрицательной или нейтральной частицей. В механизме четвертого типа атака на оба атома углерода двойной или тройной связи происходит одновременно. Реализация одного из этих четырех типов механизмов в каждом конкретном случае определяется природой субстрата и реагента и условиями реакции. Некоторые реакции, рассмотренные в данной главе, могут идти по механизмам всех четырех типов. [c.132]


    При исследовании механизмов этих реакций не только вопросы ориентации и стереохимии не играют важной роли, но и общая картина упрощается вследствие того, что свободнорадикальные реакции присоединения к двойным связям углерод — гетероатом редки [5]. Остается главный вопрос какая частица атакует вначале — нуклеофил или электрофил В большинстве случаев — это нуклеофил, поэтому такие реакции рассматриваются как нуклеофильное присоединение, которое можно представить следующим образом (для связи С = 0 для других связей механизм аналогичен)  [c.322]

    Присоединение к изонитрилам Н—N = 0 — это не просто реакция, в которой частица с электронной парой присоединяется к одному атому, а частица без электронной пары — к другому, как происходит в большинстве реакций присоединения к двойным и тройным связям, обсуждавшихся в этой главе и гл. 15. В этих реакциях и электрофил, и нуклеофил присоединяются к атому углерода. Никакие частицы не присоединяются к атому азота, который однако теряет свой положительный заряд за счет перехода к нему пары электронов от тройной связи  [c.427]

    Такая разборка допускает широчайшие возможности для выбора реагентов, соответствующих показанным на схеме комбинациям электрофил + нуклеофил. Поэтому неудивительно, что при ретросинтетическом анализе соединений, содержащих кратные связи углерод—углерод, в первую очередь обычно рассматриваются варианты, типа представленных на схеме 2.36. [c.122]

    ПЛОТИОСТЬ ВЗМО равна пулю. Орбитальный контроль, следовательно, направляет протон н любой другой электрофил к незамещенному атому углерода, что соответствует правилу Марковникова. [c.424]

    Далее, как показано выше, электрофил Х+ быстро образует л-комплекс с молекулой ароматического соединения, который может изомеризоваться в несколько более стабильный о-комплекс. В 0-комплексе электрофил связан с молекулой ковалентной связью. В результате на ароматическэм кольце возникает целый положительный заряд. При этом один из атомов углерода выключается из сопряжения и переходит из состояния гибридизации sp в состояние sp  [c.151]

    Нитроний-ион (электрофил) атакует доступное л-электронно облако кольца и, через промежуточный тс-комплекс, образует а-связь одним из углеродов кольца. При >том возникает делокализованныГ циклический карбокатион - а-комплекс  [c.165]

    Присоединение к циклопропанам может идти по любому из четырех обсуждавшихся в настояш,ей главе механизмов, но наиболее важен механизм с электрофильной атакой [106]. Реакции присоединения к замеш,енным циклопропанам обычно подчиняются правилу Марковникова, хотя известны и исключения часто эти реакции вообще характеризуются низкой региоселективностью. Применение правила Марковникова к таким субстратам можно продемонстрировать на примере взаимодействия 1,1,2-триметилциклопропапа с НХ [107]. Согласно правилу Марковникова, электрофил (в данном случае Н+) должен атаковать атом углерода, соединенный с большим числом атомов водорода, а нуклеофил должен присоединяться к атому углерода, который лучше стабилизирует положительный заряд (в данном случае скорее к третичному атому углерода, чем [c.158]

    Классический пример такого подхода к решению проблемы — ацетоуксус-ный эфир (168). Его обычной рсакционноспособной формой является УВОЛЯТ 169, реакции которого с разнообразными С-нуклеофилами проте- кают по центральному атому углерода. Последующий гидролиз продукта <170 и декарбоксилирование приводят к образованию кетона 171. Нетруд- ( з видеть, что структура последнего соответствует продукту взаимодействия того же электрофила с енолятом ацетона 172, и, следовательно, в. показанной на схеме 2.80 последовательности реакций енолят ацетоуксусного эфира 169 на самом деле используется в роли эквивалента енолята 172. [c.175]

    Двойные и тройные углерод-углеродные связи представляют собой структурные элементы с более высокой энергией, чем простые углерод-углеродные связи, и обладают поэтому повышемной реакционной способностью. Поскольку л-связь обладает большой поляризуемостью, то кратные углерод-углеродные связи легко реагируют с электроф ьпьными агентами и, следовательно, проявляют нуклеофильные свойства. Однако наряду с этим наличне связей С = С и С = С обусловливает —/-эффект . Поэтому кратные связи подвергаются также воздействию иуклеофильны.ч агентов. [c.325]

    Характерной особенностью кинетики реакции, в которой образование эЛектрофила определяет скорость реакции, является отсутствие концентрации ароматического соединения в выражении скорости. Нитрование бензола и толуола азотной кислотой в ннтрометане 101], ксилола й мезнтилена в четырёххлористом углероде [102] — примеры ре- [c.356]

    Общий механизм электрофильного замещения предполагает, что можно заместить не только водород, если электрофил атакует уже замешенный атом углерода. Замещение у атома, уже имеющего заместитель, названо /гсо-замещением и наблюдалось а ряде случаев. Легкость ухода заместителя зависит от его способностн принять чоложН тельный заряд. Этот фактор определяет, какая частица удаляется из (Т-комплекса лри ароматизации уже имевшийся в кольце заместитель нли вновь вступающий э.чектрофил  [c.368]


    Замещение у насыщенного атома углерода научено гаавным образом для металлоорганических соединений При этом разрывается связь С—М, а не С—Н Наиб часто встречается бимолекулярный (5 2) механизм, при к-ром происходит фронтальная атака электрофила на поляризованную связь с—М, что обеспечивает сохранение конфигурации реакц. центра, Менее распространен мoнo юлe-кулярпьн (Sb-l) механизм, при к-ром происходит гетеролиз связи С X с образованием карбаниона, а последующее присоед. электрофила может сопровождаться рацемизацией продукта. Возможен также механизм внутр. замещения (Sei) через четырехцентровое переходное состояние, напр,  [c.703]


Смотреть страницы где упоминается термин Углерод как электрофил: [c.270]    [c.270]    [c.270]    [c.270]    [c.270]    [c.78]    [c.97]    [c.173]    [c.164]    [c.59]    [c.71]    [c.93]    [c.159]    [c.459]    [c.158]    [c.276]    [c.133]    [c.108]    [c.110]    [c.114]    [c.178]    [c.496]    [c.350]    [c.16]    [c.119]    [c.129]    [c.150]    [c.173]    [c.680]    [c.216]    [c.513]   
Смотреть главы в:

Органическая химия. Т.2 -> Углерод как электрофил




ПОИСК





Смотрите так же термины и статьи:

Электрофил



© 2025 chem21.info Реклама на сайте