Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Третичные атомы

    При понижении температуры происходит обратное. Однако до настоящего времени еще не найдено условий, при которых относительные скорости реакций различных типов водородных атомов совершенно сравнялись бы. При равных скоростях замещения первичного и третичного атомов водорода из изобутана должно было бы получиться 90% первичного и 10% третичного хлористого изобутила. Но если хлорирование проводить фотохимически, то при —55° грег-бутилхлорида практически получают 58%, при +65° — 43% и при 450° — 28%. Следовательно, при —55° третичный атом водорода реагирует в 12 раз быстрее первичного, в то время как при 450 всего лишь в 3,5 раза. Качественно такая деградация наблюдается и для вторичного атома водорода. Она также нашла свое отражение в патенте [37], в котором отмечается преимущественное образование вторичных хлоридов при хлорировании неогексана при —30°. Поскольку температурный коэффициент фотохимических реакций очень невелик, хлорирование проводят при ультрафиолетовом облучении. Если принять, что скорости замещения первичного и вторичного атомов водорода относятся 1 3,25, газофазное хлорирование неогексана при 300° должно привести к образованию 65% первичного и 35% вторичного хлорида. При —30° это отношение совер- [c.545]


    Энергия отрыва атома водорода от вторичного и особенно от третичного атома углерода несколько меньше, чем от первичного. [c.14]

    Скорости замещения первичного, вторичного и третичного атомов водорода в случае газофазного хлорирования низших парафиновых углеводородов при 300° или в случае жидкофазного хлорирования при 30" относятся между собой приблизительно как 1 3,25 4,43. Следовательно, если принять относительную скорость замещения первичного атома водорода метильной группы за единицу, то вторичный атом водорода метиленовой группы реагирует в 3,25 раза, а третичный атом водорода метиновой группы в 4,43 раза быстрее. [c.555]

    Качественно установлено, что изомеризация олефинов может проходить над более слабыми кислыми катализаторами или при более мягких условиях сравнительно с условиями изомеризации или крекинга парафинов. Еще болое важными являются наблюдения, показывающие, что олефины в условиях более высоких температур и болео длительного времени контакта с катализатором, т. е. в условиях, необходимых для крекинга парафинов, будут скорое крекироваться, чем изомеризоваться [9, 16]. Можно заключить, что высокая энергия активации, необходимая для образования ионов карбония из нормальных парафинов наряду с высокой температурой, которая обычно требуется для этого, приводит к такому отношению скоростей реакций, когда крекинг преобладает над изомеризацией. В настоящее время Облад и сотрудники [28] изучили в этом отношении два нормальных парафина и несколько изопарафинов при довольно низких температурах (от 100 до 250° С). В условиях, при которых нормальные углеводороды мало изменяются или вообще не изменяются, парафины с третичными атомами углерода интенсивно изомеризуются и крекируются, причем соотношение этих реакций меняется в широком диапазоне в зависимости от молекулярного веса и структуры. Эти результаты представляют особый случай изомеризации парафинов в сильно измененных условиях. [c.128]

    Скорость замещения третичных атомов водорода нри низких температурах намного выше скорости замещения первичных и вторичных атомов водорода. [c.300]

    Третичные атомы водорода реагируют при нитровании наиболее легко, первичные — наиболее трудно. Вторичные атомы водорода занимают промежуточное положение. Нитрование происходит прежде, чем окисление. Окисление происходит по месту того же атома углерода, при котором стоит нитрогруппа. Скорость нитрования повышается с концентрацией азотной кислоты, однако при этом усиливается также и процесс окисления. Высокие температуры благоприятствуют замещениям у первичного атома . [c.303]


    Они нашли, что парафиновые углеводороды с третичным атомом углерода, например изобутан, уже прн 160 гладко окисляются в присутствии бромистого водорода, давая трег-бутилгидроперекись с выходом 75%. Для окисления вторичных атомов углерода требуется 190°, а для первичных — 220°. При этом из пропана получают с 75%-ным выходом ацетон, а из этана получают с тем же выходом уксусную кислоту. [c.440]

    После удаления углеводородов, содержащих третичные атомы углерода, анилиновая точка фракции повысилась до 66,6°, а показатель лучепреломления понизился до 1,3890. Можно предположить, что в указанной фракции содержится [c.117]

    Парафины с третичным атомом углерода [c.209]

    Крекинг нафтенов. Крекинг нафтенов в значительной стенени сходен с крекингом парафинов, особенно в начальной стадии, так как оба типа углеводородов являются предельными Однако следует обратить внимание на то. обстоятельство, что почти все найденные в нефти нафтены содержат третичные атомы углерода в связи с наличием заместителей у нафтенового кольца. Из табл. 5 видно, что при крекинге парафинов от С5 и выше для отделения третичиого гидридного иона требуется энергии на 13,0 ккал моль меньше, чем для отделения вторичного иона. Следовательно, можно ожидать, что замещониые нафтены будут крекироваться гораздо быстрее, чем нормальные парафины, что фактически и наблюдается [17, 18]. Если в парафиновую молекулу вводится эквивалентное количество заместителей, то скорости крекинга парафинов и нафтенов с одинаковым числом углеродных атомов становятся равными, как нанример, в случае крекинга декагидронафталина и 2,7-диметилоктана [13]. [c.129]

    Суть этого механизма сводилась к тому, что гидрогенолиз циклопентана на Pt/ является типичной дублетной реакцией при реберной двухточечной адсорбции углеводорода на поверхности платины. Согласно предложенному механизму, на поверхности катализатора происходит последовательная адсорбция двух соседних атомов углерода. При этом вероятность адсорбции каждого из них пропорциональна числу связанных с ним Н-атомов. Исходя из этого, вероятности адсорбции первичного, вторичного и третичного атомов углерода равны соответственно 3, 2 и 1. Таким путем с помощью предложенной схемы предпринята попытка объяснить разные относительные скорости гидрогенолиза различных связей кольца. Однако эта схема не объясняла, почему на Pt/ не подвергаются гидрогенолизу н-пентан или циклогексан, которые могут адсорбироваться на поверхности платины совершенно таким же способом и, казалось, могли бы реагировать по тому же дублетному механизму. [c.124]

    Как при хлорировании и нитровании н-парафиновых углеводородов, так и при сульфохлорировании их образуются все теоретически возможные изомерные моносульфохлориды. Различия выступают только при замещении изопарафинов. В то время как третичные атомы водорода, особенно в местах разветвления цепи, легко хлорируются, а тем более нитруются, вторичные или первичные атомы водорода при сульфохло-рировации инертны. Так, при сульфохлорировании изобутана образуется только первичный сульфохлорид изобутана. Что же касается третичного бутансульфохлорида, то даже следы его не могут быть обнгт-ружены. Это может быть объяснено только стерическим эффектом (пространственным затруднением). [c.380]

    Наибольшей стабильностью к окислению обладают ароматические углеводороды, не имеющие боковых цепей. С увеличением числа циклов в молекуле ароматических углеводородов их стабильность против окисления уменьшается. Нафтеновые углеводороды и углеводороды, содержащие одновременно ароматические и нафтеновые циклы в молекуле, менее устойчивы, чем ароматические. Наличие алифатических боковых цепей в молекулах циклических углеводородов снижает стабильность углеводородов против окисления. Чем больше боковых цепей у ароматических и нафтеновых циклов и чем они длиннее, тем менее устойчива молекула углеводорода к воздействию кислорода. Наличие в молекулах третичных атомов углерода снижает стабильность углеводородов к окислению. Наоборот, четвертичный атом углерода в молекуле как бы экранирует углеводород от внедрения кислорода и тормозит окислительный процесс. При наличии боковых цепей у циклических углеводородов раньше всего подвергаются окислению эти цепи, а затем уже сам цикл. При неглубоком окислении циклических углеводородов, содержащих длинные алкильные боковые цепи, характер цикла не влияет на степень поглощения кислорода. [c.65]

    Скорость крекинга сравнительно с к-парафинами заметно увеличивается при наличии третичных атомов углерода. [c.116]

    Крекируются почти с такой же скоростью, как парафины, с тем же числом третичных атомов углерода. Образуются ароматические углеводороды в результате перехода водорода к непредельным углеводородам. [c.116]

    Скорость крекинга нри наличии третичных атомов углерода увеличивается незначительно. [c.116]

    Алкилирование пропилена изобутаном проводили при 400 °С под давлением 280—1050 кгс/см в присутствии 1,2,3-трихлорпро-пана и 1,2-дихлорпропана [10]. В результате получались 2,2-диметил-пентан и 2-метилгексан. С повышением давления образуется больше 2-метилгексана, что свидетельствует об уменьшении относительной скорости реакции третичного атома углерода. Другими катализаторами термического алкилирования под давлением являются тетраэтилсвинец [И] и перекиси (например, перекись бензоила [12], перекись третп-бутила [13]). [c.253]


    Вследствие того, что церезины содержат третичные атомы водорода, они легко взаимодействуют с дымящейся серной кислотой, хлор-сульфоновой и азотной кислотой, в то время к як парафиновые углеводороды нормального строения практически не взаимодействуют с перечисленными реагентами. [c.53]

    На этом свойстве основано [83] объемное определение степени разветвленности парафиновых углеводородов. При этом методе треххлористую сурьму, обр азова вшую ся и результате иэбирагельного хлор И рова-НИ5Г третичных атомов водорода, титруют броматом калия в присутствии бром-иона и метилоранжа. [c.184]

    В продуктах реакции газофазного нитрования парафиновых углеводородов до сего времени не найдены динитросоединения, вероятно, вследствие того, что при высокой температуре реакции тотчас же наступает пиролиз ди- и полинитросоединений. После достаточно точного изучения техники газофазного нитрования и переработки продуктов реакции Данциг и Хэсс [100] попытались путем прямого нитрования парафинового углеводорода специфического строения изолировать динитросоединения. Для этой цели они нитровали в газовой фазе при температуре 408—410° парафиновый углеводород с двумя третичными атомами водорода, а именно 2,3-диметилбутан (СНз)2СН — СН (СНз)2, в следующих условиях 68%-ная азотная кислота в виде тщательной смеси с изопропилом, подаваемой в апаратуру при 408—410°, продолжительность реакции 1,2 сек. и молярное отношение углеводород ННОз, равное 1,6 1. Превращение за один проход через аппаратуру, одинаковую с аппаратурой для нитрования пентана, составляет в расчете на [c.293]

    Легче всего и почти без побочных реакций сульфохлорируются насыщенные алифатические углеводороды нормального строения. У этих углеводородов хлорирование и в углеродной цепи протекает незначительно и при достаточно сильном источнике света составляет лишь несколько процентов. Менее выгодное со-отношение получается при сульфохлорировании изопарафина. При их сульфохлорировании всегда наблюдается ясно выраженное повышенное хлорирование в углеродной цепи. Причина этого заключается в том, что третичные атомы водорода, к к это в дальнейшем будет показано деталынее, не сульфохлорируются, в то время как при хлорировании они, как известно, реагируют легче всего. Чем выше степень разветвленности, тем менее благоприятно протекает реакция с этими углеводородами. [c.373]

    Однако квантовые выходы были во всех случаях меньше единицы. Лучше всего эта реакция протекает с высшими парафиновыми углеводородами. Третичные атомы водорода реагируют наиболее легко, первичные наиболее трудно. При реакции двуокиси серы с пропаном и н-бутаном установлено образование двух изомерных сульфиновых кислот, причем в случае бутана преимущественно получается сульфи-новая кислота с группой — ЗОаН у вторичного атома углерода. Олефины вступают в эту реакцию гораздо труднее и тормозят превращение насыщенных углеводородов. [c.505]

    На причины этого явления проливает свет тот факт, что одно и то же повышение температуры при жндкофаэном хлорировании (проводимом под давлением или в растворе четыреххлористого углерода) вызывает большее различие в скоростях замещения первичных, вторичных и третичных атомов водорода, чем при газофазном хлорировании. [c.547]

    Недавно было опубликовано замечание к реферату доклада Суйяра и Юнгерса о фотохимическом и каталитическом хлорировании углеводородов [61] Правильный выбор активируюш,их средств может до известной степени определить место вступления хлора в молекулу . Это дает возлюжность предположить, что при хлорировании парафиновых углеводородов может быть удастся направлять галоид в заданное место. В оригинальной литературе [62] встречается упоминание о давно известном факте, что при хлорировании этилбензола хлор преимущественно (на 80%) становится в/ -положение или что свет способствует замещению в боковой цепи алкилбензолов. Дальше там написано буквально следующее При фотохимическом хлорировании чистых парафиновых углеводородов можно также установить различие между первичными, вторичными и третичными атомами водорода, используя дезактивирующее действие жирных кислот и, возможно, других соединени иа квантовый выход . Эти замечания, сделанные совсем недавно, еще раз указывают на неясные представления о процессах замещения парафиновых углеводородов. [c.559]

    Для точного выяснения такого основного вопроса при окислении парафинов, как определение пунктов атаки кислорода, необходимо прежде всего исходить из индивидуального тяжелого углеводорода с неразветвленной цепью. Этот углеводород не должен содержать третичных атомов водорода. Необходимо далее изучить скорость окисления парафиновых углеводородов и различных теоретически возможных жирных кислот самих по себе я в смесях друг с другом, проводя сравнение в одних и тех же условиях. Сверх того для истолкования полученных до сих пор результатов следовало бы определить в условиях, в которых проводят в технике окисление парафинов, зависимость реакционной способности чистых, индивидуальных парафиновых углеводородов, взятых отдельно и в смесях (например, С 2—Сго), от числа атомов углерода. Необходимо, чтобы в исходных продуктах отсугствовали разветвленные углеводороды, поскольку было точно установлено, что при окислении первичный атом водорода реагирует воего медленнее, третичный — очень быстро, а реакционная способность вторичного атома водорода занимает промежуточное положение. [c.584]

    О л моль - сек. Если это действительно так, то значения предакспоненциаль-ных множителей будут соответствовать наименьшим наблюдаемым значениям для рекомбинации свободных радикалов в газовой фазе. Эти значения вполне приемлемы, если учесть стерические затруднения, возникающ,ие ири рекомбинации сравнительно больших метильных групп. Данные, приведенные в табл. XIII.12, можно рассчитать по теплотам сгорания, если средние значения энергии принять за теплоту реакции 1, а теплотой диссоциации третичного атома водорода в изобутане считать значение 87,5 ккал. [c.320]

    На примере разветвленных углеводородов состава С4—Се показано [25], что влияние структуры углеводорода на скорость гидрогенолиза связано главным образом с изменением констант адсорбции, в то время как константа скорости разрыва С—С-связи изменяется мало. Максимальная реакционная способность наблюдается в случае третичного атома С. Для связей, в которых участвует четвертичный атом С, природа атомов С в а-положении к нему оказывает меньшее влияние на реакционную способность связи, чем атомы С в Р-поло-женпи. Обсуждаются механизмы процесса с участием 1,2-, 1,3-, 1,4-и 1,5-дпадсорбированных частиц. [c.92]

    Чистые углеводороды очеиь чувствительны к образованию перекисей под действием атмосферного кислорода при 25°. При этом легко затрагиваются третичные атомы углерода, а также атомы водорода, связанные с атомами углерода, находящимися в -положении к ненасыщенным связям. Для хранения чистых углеводородов должны применяться специальные меры предосторожности. [c.504]

    Образование ионов карбония из предельных углеводородов. Парафиновые и циклопарафиновые углеводороды обычно образуют ионы карбония путем отдачи гидридного иона иону карбония (правило 5) [I], причем гидридные ионы, присоединенные к третичным атомам углерода, в большинстве случаев легко отщепляются. Образовавшийся ион карбония претерпевает одно или несколько упомянутых выше превращений, прежде, чем он, в свою очередь, отнимет гидридный ион от другой молекулы предельного углеводорода. Таким образом происходит цепная реакция, для начала которой достаточно присутствие следов иона карбония, иниции рующег о ре акцию. [c.216]

    Реакция, катали.чируемая галогенидами металлов. Галоидводородный обмен имеет место в том случае, когда предельные углеводороды, содержащие третичные атомы углерода, реагируют с галоидными алкилами в присутствии хлористого алюминия [1]. Нанример, в результате взаимодействия изопентана с третичным хлористым бутилом в присутствии бромистого алюминия при времени контакта около 0,001 сек. образуется т/)ет-амилбромид (50—70% от теоретического выхода) и изобутан. Эту реакцию можно рассматривать как доказательство способности иона карбония отнимать гидридный ион в соответствии с правилом 5. Механизм обмена можот быть выражен следующим образом  [c.217]

    Реакции, индуциированные перекисями. Четыреххлористый углерод образует хлороформ также при его обработке предельными углеводородами в присутствии соединений, легко дающих свободные радикалы, нанример, перекисей [57]. При этом наличие третичного атома углерода в продольном углеводороде необязательно обменная реакция происходит достаточно легко как в случае нормальных парафинов, имеющих не менее трех атомов углерода, так и в случае разветвленных парафиновых и циклопарафиновых углеводородов. Так, пропан, и-гептан, изобутан и метилциклогексан при нагревании до 130—140° С с четыреххлористым углеродом в присутствии ди-/ г/)ет-бутилперекиси дают в качестве основных продуктов соответственно изопропилхлорид, етор-гептилхлориды, трет-бутилхлорид и 1-хлор-1-метилциклогексан. Четыреххлористый углерод при этом превращался в хлороформ. Свободные радикалы, образованные при разложении перекиси, инициируют следующую цепную реакцию  [c.218]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Дихлорадканы, у которых по крайнон мере один иа атомов хлора соединен с третичным атомом углерода, в присутствии катализаторов Фриделя-Крафтса могут 1 онденоиро1 аться с этиленом и хлорэтиленом по следуюш ей схеме [58] ,  [c.222]

    Ранние представления Попа, Дикстра и Эдгара [16], считавших, что начальная атака направлена на метильную группу в конце самой длинной алкильной цепи, уступили место общепризнанному мнению, что, строго говоря, атака свободных радикалов может быть направлена на любой атом водорода в углеводородной молекуле и что частота атак в любое положение зависит от таких обстоятельств, как реакционная способность водородных атомов, количество их в данном положении и в некоторых случаях от стерических факторов. В общем случао реакционная способность возрастает в ряду — первичный, вторичный и, наконец. Третичный атомы водорода. Например, в нормальных парафинах начальная атака направлена преимущественно на метиленовые Г1)упны, а между ними более или менее произвольно. Это было четко показано Бентоном и Виртом [6], которые, изучая самоокисление н-декана при 145° С, установили, что все восемь метиленовых групп в пределах точности эксперимента подвержены атаке в одинаковой степени, тогда как обе метильные группы являются гораздо менее реакционноспособными. Такой обычный характер атаки главным образом на метиленовые группы по является неожиданным в связн с ранними исследованиями свободнорадикальных реакций хлорирования однако доказательствам Бентона и Вирта противостоят утверждения других исследователей, нашедших, что атака направлена преимущественно в 2-положение [11]. Таким образом начальная ассоциация радикала и кислорода будет обычно приводить к образованию вторичного алкилперекисного радикала  [c.271]

    Сказанное выше согласуется с общим правилом, согласно которому реакции замещения легче всего происходят на третичном атоме углерода и трудне( всего — на первичном. [c.294]

    Спирты. Мотанол образуется в больших количествах путем окисления углеводородов с тремя или большим числом углеродных атомов при низком или умеренном давлениях и путем окисления мотана и этана при высоком давлении. В результате окисления при высоком давлении можно получать хорошие выходы спиртов с тем >кс числом углеродных атомов. Причем если углеводород содержит вторичные и третичные атомы водорода, то преимущественно будут образовываться вторичные и третичные спирты. [c.341]

    При озонировании соединений, содержащих двойную связь между третичными атомами углерода, кроме, возможно, озонида [7 1,2-диметил-циклопентана (XII) [6 , в виде мономеров были выделены дишь очень немногие озониды [7]. К числу других, выделенных в чистоцг виде, отно- [c.349]


Смотреть страницы где упоминается термин Третичные атомы: [c.254]    [c.548]    [c.36]    [c.120]    [c.305]    [c.412]    [c.95]    [c.434]    [c.436]    [c.218]    [c.219]    [c.220]    [c.221]    [c.233]   
Органическая химия (1979) -- [ c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте