Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Брожение, связь с гликолизом

    Брожение, связь с гликолизом [c.252]

    Молочнокислое и спиртовое брожение — основные источники обеспечения энергией указанных микроорганизмов в анаэробных условия. . Из приведенной схемы следует, что на каждую молекулу глюкозы, превращенную в две молекулы молочной кислоты или этанола, фосфорилируется две молекулы АТФ. Таким образом, биоэнергетическим итогом анаэробного гликолиза является образование двух макроэргических связей на одну деградированную молекулу глюкозы. [c.350]


Рис. 18.4. Последовательность реакций гликолиза, его связь с аэробным окислением глюкозы, гликогенолизом, спиртовым брожением цифры в кружке обозначают номера реакций цифрой (2) — отмечены молекулы, представленные дважды в расчете на одну молекулу глюкозы Рис. 18.4. <a href="/info/2829">Последовательность реакций</a> гликолиза, его связь с <a href="/info/109221">аэробным окислением глюкозы</a>, гликогенолизом, <a href="/info/29636">спиртовым брожением</a> цифры в кружке обозначают <a href="/info/436056">номера реакций цифрой</a> (2) — отмечены молекулы, <a href="/info/679850">представленные дважды</a> в расчете на одну молекулу глюкозы
    Оба пути превращения глюкозы используют одни и те же реакции, начиная от глюкозо-6-фосфата и кончая пируватом. Единственное различие между ними связано с конечной судьбой пирувата и, следовательно, также с тем, каким путем происходит регенерация НАД" " из восстановленного НАД (см. ниже, пункт 3). Сказанное относится и ко всем прочим метаболическим цепям реакций, в которых остаток гексозы вначале превращается в две молекулы пирувата. При гликолизе в мышцах пируват и восстановленный НАД непосредственно взаимодействуют друг с другом в присутствии лактатдегидрогеназы, следствием чего является образование лактата и регенерация НАД+ (табл. 33, реакция 13). При спиртовом брожении пируват сначала декарбоксилируется до ацетальдегида (табл. 33, реакция 14), а затем последний восстанавливается восстановленным НАД с образованием спирта. [c.278]

    Брожение, как мы видим, вовсе не отделяется от дыхания, а как бы составляет его часть, притом начальную. Можно, по-видимому, рассматривать брожение как самый древний, исходный путь распада углеводов (в связи с этим небезынтересно вспомнить, что брожение, или анаэробный гликолиз, происходит в слабо структурированной основной плазме, тогда как заключительные этапы дыхания, напротив, протекают в высокоорганизованных специализированных органеллах — митохондриях). [c.409]

    В клетках различных органов и тканей глюкоза окончательно распадается до СО, и воды. У микроорганизмов глюкоза распадается в процессе различных видов брожения, а у высших растений, человека и животных — путем гликолиза, в пентозофосфатном цикле, и цикле трикарбоновых кислот. В процессе превращения (распада) углеводов высвобождается энергия, которая частично аккумулируется в макроэргических связях АТФ, а частично выделяется в виде тепла. [c.208]

    Приведенные цифры показывают, что эффективность превращения энергаи в каждой из этих систем довольно высокая по сравнению с бензиновым (25-30%) или паровым (8—12%) двигателями. Количество же энергаи, запасаемое в виде АТФ при аэробном дыхании, в 19 раз больше, чем при анаэробном (38 молекул АТФ на одну молекулу глюкозы в первом случае и 2 молекулы АТФ — во втором). С этой точки зрения аэробное дыхание значительно эффективнее анаэробного. Связано это с тем, что при анаэробном дыхании значительная часть энергии остается запертой в этаноле или молочной кислоте. Энергия, заключенная в этаноле, так и остается для дрожжей навсегда недоступной и, значит, спиртовое брожение в смысле получения энергаи — малоэффективный процесс. Из молочной же кислоты позднее может быть извлечено довольно большое количество энергии, если появится кислород. В присутствии кислорода молочная кислота превращается в печени в пировиноградную кислоту. Последняя поступает затем в цикл Кребса и полностью окисляется до СО2 и Н2О, в результате чего дополнительно образуется большое количество молекул АТФ. Возможен и другой путь — за счет энергии АТФ из пировиноградной кислоты может вновь образоваться глюкоза в процессе, который представляет собой обращение гликолиза. [c.352]


    Фосфорилирование двух молекул АДФ при распаде одной люлекулы глюкозы показывает, что спиртовое брожение сопровождается появлением макроэргических фосфатных связей это представляет большой интерес при энергетической оценке процесса гликолиза. [c.285]

    В присутствии кислорода образовавщийся во время гликолиза пируват используется во второй стадии дыхания, в которой он окисляется до СОг и НгО с образованием новых молекул АТР. В отсутствие кислорода пируват вступает в реакции, последовательность которых носит название брожения (рис. 5.5) при брожении существенного дополнительного синтеза АТР не происходит. На плохо дренированных почвах недостаток кислорода— обычная проблема когда почва заболочена, уровень кислорода в ней ниже оптимума. При этом в корневых клетках ограничено аэробное дыхание и соответственно ограничен синтез АТР. А так как поглощение минеральных веществ из почвы связано с расходованием АТР, у растений, произрастающих на плохо дренированных почвах, часто обнаруживаются симптомы резкой недостаточности тех или иных минеральных элементов (см. гл. 7). [c.151]

    Ни та, ни другая реакция не. сопровождается образованием АТФ. Б связи с этим выход АТФ при спиртовом брожении такой же, как при гликолизе (первой фазы брожения и дыхания), и составляет две молекулы при распаде 1 моль глюкозы. Восстановленные никотин-амидные коферменты (НАД-Нг), образовавшиеся в процессе глико-212 [c.212]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Окисление, сопряженное с фосфорилированием. Рассмотренные реакции при спиртовом брожении и гликолизе в мышцах, приводящие к образованию богатых энергией фосфатных связей АТФ, осуществляются в анаэробных условиях и непосредственно связаны с молекулами субстрата. Такое фосфорилирование обычно называют анаэробным фосфорилированием на уровне субстраш или субстратным фосфорилированием. В противоположность ему существует фосфорилирование, которое непосредственно с субстратом не связано и сопряжено с окислением восстановленного никотинамидадениндинуклеотида (НАД Нг) в дыхательной цепи митохондрий. [c.368]

    А. Ф. Воробьев, Н. Ф. Моисеева. ЛИАЗЫ, класс ферментов, катализирующих негидролитич. отщепление атомов или группы атомоа от субстрата с образованием двойных связей и обратные р-ции ирисоединения по двойным связям. Каталм И1руют расщепление связи С — С, С — О, С — N, С — S, С — галоген. Участвуют в процессах гликолиза, брожения, в циклах трикарбоновых к-т, мочевины и др. процессах. См., напр., Альдолазы. [c.299]

    АЛЬДОЛАЗЫ, ф ерменты класса лиаз. Содержатся в микроорганизмах, грибах, высших растениях, разл. тканях млекопитающих. Катализируют конденсацию альдегидов с образованием новой углерод-углеродной связи. Наиб, изучена 0-фруктозо-1,6-дифосфат-0-глицеральдегид-3-фосфат-лиаэа, для к-рой мол. м. 147 000—180 ООО, оптим. каталитич. активность при pH 7,5—8,5 состоит из двух субъединиц. Катализирует р-цию фруктозодифосфат г 3-фосфоглице-риновый альдегид -f- фосфодиоксиацетон. Р-ции, катализируемые А.,— важный этап анаэробного превращ. углеводов при гликолизе и брожении. [c.27]

    В процессе брожения, так же как и гликолиза, распад углеводов идет через фосфорные эфиры гексоз, триоз и другие фос( юрилированные промежуточные продукты. За счет энергии, освобождаемой при превращениях этих продуктов, например, при окислении дифосфоглицерино-вого альдегида, отщепляющийся остаток фосфорной кислоты переносится на адениловую систему, образуя богатые энергией связи аденозинтрифосфорной кислоты. [c.151]


    Выше мы уже упоминали о связывании добавленного в сок SO2 с содержащимися в соке карбонильными соединениями. К связующим относят 5-кетофруктозу, присутствующую в испорченных фруктах, 1-ксилозон, содержащийся в аскорбиновой кислоте, и галактуроновую кислоту из пектина. Еще один (обычно основной) источник связующих веществ для серосодержащих соединений в сидре образуется в ходе брожения в результате гликолиза по циклу Кребса [107]. Основными промежуточными метаболитами, возникающими при продуцировании дрожжами этилового спирта, являются пируват, а-кетоглутарат и ацетальдегид — карбонильные соединения, которые соединяются с [c.103]

    При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]

    Единство и теснейшая связь процессов брожения и дыхания растений, микроорганизмов и животных вытекают из того факта, что почти у всех живых организмов имеются одинаковые ферменты и те же основные промежуточные продукты, которые образуются в процессе их жизнедеятельности. Начальные этапы распада углеводов при анаэробном и аэробно.м дыхании одинаковы и начинаются с образования фосфорных эфиров глюкозы, именно глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-1,6-дифосфата. Фосфорилирование глюкозы является необходимым условием как при аэробном распаде углеводов до углекислого газа и воды во время дыхания, так и при распаде углеводов в анаэробных условиях с образованием молочной кислоты и спирта. Пути аэробного и анаэробного распада углеводов расходятся на стадии образования пировиноградной кислоты в животные тканях или соответственно уксусного альдегида в дрожжевых клетках. Пировиноградная кислота занимает центральное положение в обмене углеводов. Она образуется из глюкозы (после фосфорилирования) или из гликогена (после фосфоролиза) путем нормального гликолиза. В анаэробных условиях пировиноградная кислота либо распадается в результате прямого декарбоксилирования, как это наблюдается в дрожжах, либо восстанавливается водородом до молочной кислоты, как это имеет место в мышцах. Спирт и молочная кислота являются конечными продуктами анаэробного обмена. В аэробных условиях пи-роаиноградная кислота полностью окисляется до углекислого газа и воды, [c.339]

    Сравнение между собою калорийной ценности одной грамм-молекулы глюкозы и двух грамм-молекул этилового спирта приводит к заключению, что анаэробный гликолиз сопровождается уменьшением свободной энергии, причем это уменьшение составляет около 50 ООО калорийна грамм-молекулу сброженной глюкозы. Если учесть, что при сбрал ивании грамм-молекулы глюкозы образуются за счет фосфорилирования АДФ две грамм-молекулы АТФ и что при образовании каждой грамм-молекулы АТФ (макроэргических фосфатных связей) используется 12500 калорий свободной энергии, то легко видеть, что около 50 о общей свободной энергии, возникающей при сбраживании глюкозы, оказывается в макроэргических связях АТФ. При гидролизе АТФ с помощью аденозинтрифосфатазы, а также при фосфоферазных реакциях освобождается энергия, доступная для использования клетками. Биологический смысл сложного пути спиртового брожения, надо полагать, заключается в том, что он приводит к образованию макроэргических фосфатных связей, обеспечивающих энергетические нужды клеток. [c.285]

    Если сопоставить изменение уровней свободной энергии при брожении, гликолизе и дыхании с количеством энергии, запасенной в макроэргических связях АТФ в этих же случаях, то оказывается, что при спиртовом брожении запасается 27,8%, при гликолизе—32,8, при полном окислении по апотомическому пути— 39,6, а по дихотомическому пути—43,0% энергии, способной вьщелиться при сгорании глюкозы. Таким образом, не только общий уровень запасаемой энергии, но также и доля ее от общего количества высвобождаемой энергии оказывается максимальной в случае полного распада глюкозы по дихотомическому пути. [c.429]


Смотреть страницы где упоминается термин Брожение, связь с гликолизом: [c.324]    [c.137]    [c.353]    [c.76]    [c.137]    [c.286]   
Смотреть главы в:

Биохимия -> Брожение, связь с гликолизом




ПОИСК





Смотрите так же термины и статьи:

Брожение

Брожения брожение

Гликолиз



© 2025 chem21.info Реклама на сайте