Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пируват, и гликолиз

Рис. 99. Схема гликолиза (превращение глюкозы в две молеку.яы пирувата) Рис. 99. <a href="/info/98615">Схема гликолиза</a> (<a href="/info/36412">превращение глюкозы</a> в две молеку.яы пирувата)

    Теперь можно подвести итог тому, каков энергетический выход при окислении молекулы глюкозы, осуществляемом в максимально отлаженной энергетической системе, функционирующей в эукариотных клетках гликолиз—>ЦТК— -дыхательная цепь митохондрий. На первом этапе в процессе гликолитического разложения молекулы глюкозы образуются по 2 молекулы пирувата, АТФ и НАД Н2. Конечными продуктами реакции окислительного декарбоксилирования 2 молекул пирувата, катализируемой пируватдегидрогеназным комплексом, являются 2 молекулы ацетил-КоА и НАД Н2. Окисление 2 молекул ацетил-КоА в ЦТК приводит к образованию 6 молекул НАД Н2 и по 2 молекулы ФАД Н2 [c.366]

Рис. 10.7. Гликолиз и глюконеогенез. Красными стрелками указаны обходные пути глюконеогенеза ири биосинтезе глюкозы из пирувата и лактата цифры в кружках обозначают соответствующую стадию гликолиза. Рис. 10.7. Гликолиз и глюконеогенез. Красными стрелками указаны <a href="/info/567123">обходные пути</a> глюконеогенеза ири <a href="/info/98816">биосинтезе глюкозы</a> из пирувата и лактата цифры в кружках обозначают соответствующую стадию гликолиза.
    При усилении гликолиза происходит накопление пирувата и лактата в крови, что сопровождается обычно изменением кислотно-основного равновесия, уменьшением щелочных резервов крови. Увеличение содержания лактата и пирувата в крови может наблюдаться также при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т.п.) в результате торможения процессов глюконеогенеза в печени. [c.362]

    Другие субстратные циклы включают превращение глюкозы в глю-козо-6-фосфат и гликолиз глюкозо-6-фосфата с образованием глюкозы (рис. 11-11, наверху, слева), синтез и распад гликогена (наверху, справа), а также превращение фосфоенолпирувата в пируват и обратное превращение пирувата в фосфоенолпируват через оксалоацетат и малат (которые осуществляются частично в митохондриях). [c.513]

    Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия окисление продукта гликолиза—пирувата. [c.319]

    Клетки, недостаточно снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако больщинство животных и растительных клеток в норме находится в аэробных условиях и свое органическое топливо окисляет полностью до СО, и Н,0. В этих условиях пируват, образовавщийся при расщеплении глюкозы, не восста- [c.343]


    РИС, 9-7. Гликолиз, расщепление остатков гексозы (через стадию образования пирувата). [c.337]

    Многие соединения, встречающиеся в клетке, синтезируются из веществ, участвующих в реакциях гликолиза и цикла трикарбоновых кислот, или из близко родственных им соединений. Используя в качестве исходного субстрата пируват, укажите реакции, ведущие к образованию следующих соединений  [c.358]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]

    На проведении реакций, катализируемых системами ферментов основаны многие крупномасштабные процессы в пищевой промышленности. Классическим примером является получение этанола и содержащих его продуктов винно-водочной промышленности, в ходе которого дрожжи с помощью набора ферментов гликолиза (см. 8.2) превращают сахар в пируват и далее при действии пируват декарбоксилазы и алкогольдегидрогеназы — в этиловый спирт. В основе применения различных видов молочнокислых бактерий в молочной промышленности лежит их способность осуществлять гликолиз и восстановление пирувата с по- мощью лактатдегидрогеназы. [c.159]

    Гликолиз имеет продолжение у микроорганизмов, например в дрожжевых клетках идут процессы, называемые спиртовым брожением, когда пируват декарбоксилируется до уксусного альдегида, а последний под влиянием алкогольдегидрогеназы превращается в спирт. Брожение может протекать и по другим направлениям с образованием других спиртов или органических кислот и тогда оно называется маслянокислым или пропионовокислым брожением. Остальные стадии спиртового брожения протекают так же, как и в гликолизе. Процессы гликолиза, гликогенолиза и спиртового брожения приведены на рис. 33 с указанием ферментов, катализирующих отдельные реакции, и особенностей отдельных стадий. [c.81]

    Анаэробный ферментативный гидролиз глюкозы до пировиноградной кислоты (пируват) носит название гликолиза. Это один из универсальных ферментативных процессов, так как с не- [c.36]

    Цикл трикарбоновых кислот (цикл Кребса) представляет собой конечный общий путь для окисления топливных молекул. Большинство топливных молекул вступает в цикл в виде ацетил-КоА. Окислительное декарбоксилирование пирувата, приводящее к образованию ацетил-КоА, является связующим звеном между гликолизом и циклом трикарбоновых кислот. Заметим, что последний служит также источником строительных [c.358]

    Последовательность реакций, ферменты, катализирующие их, и промежуточные продукты гликолиза показаны на рис. 15. Образующийся в процессе гликолиза пируват является очень [c.37]

    Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфофруктокиназная и иируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3 этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата. [c.338]

    Гликолиз (от греч. gly ys—сладкий и lysis—растворение, распад) —это последовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием АТФ. [c.327]

    Гликолиз —это совокупность реакций превращения глюкозы в пируват. У аэробньгх организмов гликолиз служит как бы прелюдией к циклу трикарбоновых кислот (циклу Кребса). Десять реакций гликолиза протекают в цитозоле. Гликолитический путь играет двоякую роль приводит к генерированию АТФ в результате распада глюкозы, и он же поставляет строительные блоки для синтеза клеточных компонентов. Реакции гликолитического пути в физиологических условиях легкообратимы, кроме реакций, катализируемых гексокиназой, фосфофруктокиназой и пируваткиназой. Фосфофруктокиназа-наиболее важный регуляторный элемент (фермент) в процессе гликолиза, ингибируется высокими концентрациями АТФ и цитрата и активируется АМФ. [c.358]


    Биологическое действие. Никотинамидные нуклеотиды выполняют коферментную функцию в двух типах реакций 1) НАД" входит в состав дегидрогеназ, катализирующих окислительно-восстановительные превращения пирувата (гликолиз), изоцитрата, а-кетоглутарата, малата (ЦТК). Эти реакции чаще локализованы в митохондриях и служат для освобождения энергии в сопряженных митохондриальных цепях переноса протонов и электронов 2) НАДФ+ входит в состав дегидрогеназ (редуктаз), которые чаще локализованы в цитозоле или эндоплазматическом ретикулуме и служат для восстановительных синтезов (НАДФ-зависимые дегидрогеназы пентозофосфатного пути, синтез жирных кислот и холестерина, микросрмальные и митохондриальные монооксигеназные системы — синтез желчных кислот, кортикостероидных гормонов). [c.349]

    В условиях, когда потребность в НАДФН значительно превышает потребность в рибозо-5-фосфате, возможна реализация др. механизма, в соответствии с к-рым образующийся рибозо-5-фосфат превращ. не в глюкозо-б-фосфат, а в пировиноградную к-ту (пируват) в результате гликолиза фруктозо-б-фосфата и глицеральдегид-З-фосфата, образующихся в р-циях 6-8. При этом образуются НАДФН, НАДН (восстановленная форма никотинамидадениндинуклеотида) и АТФ по суммарному ур-нию  [c.464]

    ТДФ-зависимая пируватдегндрогеназа принимает участие в окислит, декарбоксилировании пировиноградной к-ты (пирувата) с образованием ацетилкофермента А. При этом Ш1руват, образующийся в результате гликолитич. расщепления глюкозы (см. Гликолиз), включается в трикарбоновых кислот цикл, где окисляется до СО и Н О. Общее кол-во энергии, получаемой в результате окисления пирувата в этом цикле, почти в 4 раза превосходит энергию, освобождаемую в предшествующих р-циях гликолиза. Образующийся в этом процессе ацетилкофермент А служит донором остатка уксусной к-ты ( активного ацетата ) для синтеза жирных к-т, стеринов, в т. ч. холестерина, стероидных гормонов, желчных к-т, ацетилхолина и др. [c.564]

    Пентозофосфатный цикл часто рассматривают как процесс полного окисления гексоз в СОг. Чтобы осуществить такое окисление, Сз-моле-кулы, рассматриваемые на рис. 9-8, Л как продукты, должны быть превращены обратно в глюкозо-6-фосфат (под действием альдолазы, фосфатазы и гексофосфат-изомеразы), который снова вступает в цикл. Однако имеются и другие пути расщепления Сз-продукта — фосфоглн-церинового альдегида. Например, под действием ферментов гликолиза он может быть окислен до пирувата, а далее в цикле трикарбоновых кислот до СОг. [c.343]

    Реакция восстановления пирувата завершает внутренний окислительновосстановительный цикл гликолиза. НАД ири этом играет роль промежуточного переносчика водорода от глицеральдегид-З-фосфата (6-я реакция) на иировиноградную кислоту (11-я реакция), ири этом сам он регенерируется и вновь может участвовать в циклическом процессе, получившем название гликолитический оксидоредукции. [c.333]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    Гликолиз заканчивается лактатдегидрогеназной реакцией, где при участии кофермента НАД" из пирувата образуется лактат - конечный продукт гликолиза. Гликолиз является основным путем превращения всех гек-соз, но при этом они превращаются либо в глюкозу-1-фосфат, глюкозуб-фосфат, либо во фруктозу-6-фосфат. [c.80]

    Гликолиз. Понятие гликолиз означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО,. В настоящее время понятие гликолиз используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин аэробный гликолиз в отлгиие от анаэробного гликолиза , завершающегося образованием молочной кислоты (лактата). [c.319]

    В тканях человека, в значительной степени использующих энергию гликолиза (например, скелетные мышцы), главными изоферментами являются ЛДГд и ЛДГ . Активность ЛДГ максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ . Преобладание изоферментов ЛДГ, и ЛДГд обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в молочную кислоту. [c.334]

    Механизм реакции спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента НАДН восстанавливается в лактат. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями — иируватдекарбо-ксилазной и алкогольдегидрогеназной. [c.334]

    Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой  [c.340]

    Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО, и Н,0 дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-З-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению gH ,Og + 60,—>6СО, + 6Н,0 синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отнощении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз. [c.349]

    Первая стадия ацетилхолинового цикла — синтез ацетилхолина из ацетилкофермента А (ацетил-СоЛ) и холина (рис. 8.2). Аце-тил-СоА является конечным продуктом гликолиза. Он образуется в митохондриях при окислительном декарбоксилировании пирувата, катализируемом мультиферментным комплексом пи-руватдегидрогеназы. Поскольку ацетил-СоА не может проникать через. митохондриальную мембрану, необходим его непрямой перенос в цитоплазму, где будет синтезироваться ацетилхолин. Пока неясно, происходит ли в нервной ткани такой же самый процесс, как, например, в жировых тканях, где ацетил-СоА реагирует с оксалилацетатом, образуя цитрат последний транспортируется из митохондрий и в цитоплазме расщепляется АТР-цитратлиазой, вновь образуя ацетил-СоА и оксалилацетат. Эксперименты с С-меченным цитратом показали, однако, что в нервной ткани ни цитрат, ни ацетат не используются в качестве источников ацетилхолина, и вопрос об его источнике остается открытым. По-видимому, в любом случае нервная ткань должна содержать отдельный пул ацетил-СоА [5]. [c.195]

    Изменение углеводного обмена при гиноксических состояниях. Отставание скорости окисления пирувата от интенсивности гликолиза наблюдается чаще всего при гиноксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозах, а также в результате относительной гипоксии при чрезмерной мышечной работе. [c.362]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Бесцв. крист. 210. Раств-сть р. HjO о.п. р. EtOH. При 10 М ингибирует лактатдегидрогеназу из сердца путем конкурирования с пируватом [JB 234, 1143 (1959)]. Ранее использ. для ингибирования гликолиза в неопластических клетках. [c.271]

    Образование сложных эфиров (фосфатов) — типичная реак-я в метаболизме углеводов. Например, все стадии гликолиза ревращения глюкозы в пируват) осуществляются с соедине-нми только в фосфатной форме. Получение фосфатов гид- [c.449]

    Наконец, у бактерий Zymomonas mobilis с неясным систематическим положением, используемых в Мексике для получения национального спиртного напитка пульке , разложение глюкозы до пировинофадной кислоты идет по пути Энтнера—Дудорова. Дальнейшее превращение пирувата происходит с участием пируватдекарбоксилазы и алкогольдегидрогеназы. Выход продуктов брожения такой же, как при спиртовом брожении по гликолитическому пути по 2 молекулы спирта и СО2 на 1 молекулу сброженной глюкозы, но энергетический выход в два раза ниже, чем при гликолизе всего 1 молекула АТФ на 1 молекулу сброженной глюкозы. [c.222]

    В течение длительного времени считали, что единственным путем сбраживания углеводов является гликолитический путь с различными вариантами метаболизирования пирувата. Однако постепенно накапливались данные, которые определенно указывали на существование иных, чем гликолиз, путей расщепления углеводов. Гликолитическая схема в одних случаях не могла объяснить использования эубактериями пентоз в качестве энергетического субстрата, а также того, каким путем они синтезируют необходимую для нуклеиновых кислот рибозу, в других — распределения С в конечных продуктах брожения. [c.251]

    Как можно видеть из схемы процесса (см. рис. 67), путь Энтнера—Дудорова имеет несколько точек пересечения с гликоли-тическим и окислительным пентозофосфатным путями 6-фосфо-глюконовая кислота представляет собой промежуточное соединение пути Энтнера—Дудорова и окислительного пентозофосфатного пируват и 3-ФГА — промежуточные соединения пути Энтнера—Дудорова и гликолиза. [c.261]

    Молекулы пирувата после их окислительного декарбоксилирования поступают в ЦТК, где происходит их полное окисление, приводящее к выделению 2 молекул СО3, синтезу 3 молекул НАД Нз и 1 молекулы ФАД Нз. В отличие от гликолиза и пути Энтнера—Дудорова окислительный пентозофосфатный цикл может обеспечить полное окисление исходного субстрата. Вторая особенность этого пути — отсутствие реакций, сопряженных с синтезом АТФ по механизму субстратного фосфорилирования. [c.394]

    Стержневым этапом гликолиза является окислительная дсчтрукция глюкозы до двух молекул пирувата — соли пировиноградной кислоты с использованием в качестве окислителя двух молекул Стехиометрическое уравнение процесса [c.346]


Смотреть страницы где упоминается термин Пируват, и гликолиз: [c.315]    [c.317]    [c.326]    [c.335]    [c.514]    [c.549]    [c.550]    [c.265]    [c.367]    [c.343]    [c.372]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.75 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Гликолиз



© 2025 chem21.info Реклама на сайте