Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Феноменологическая теория упорядочения

    ФЕНОМЕНОЛОГИЧЕСКАЯ ТЕОРИЯ УПОРЯДОЧЕНИЯ [c.9]

    Естественная физическая идея состоит в предположении о способности глобулы служить неким энергетическим резервуаром. Энергия теплового движения или энергия, приобретенная глобулой при сорбции субстрата, конвертируется в энергию ФСК, в результате чего происходит эффективное понижение энергии активации. Неполная упорядоченность глобулы и малые различия в свободных энергиях упорядоченного и неупорядоченного состояний (порядка 1 ккал/моль) означают наличие конформационных флуктуаций [104, 105]. Косвенные свидетельства в пользу таких флуктуаций состоят в заметном дейтеро-обмене с водородами пептидных связей —СО—NH— при температурах, значительно меньших температуры денатурации белка, при которой водородные связи рвутся [104]. О том же говорит повышенная жесткость ФСК по сравнению со свободным ферментом— ФСК труднее расщепляется трипсином [105—107]. По-видимому, связывание субстрата уменьшает конформационную подвижность глобулы. Наличие значительных флуктуаций следует также из общей феноменологической теории полимерной глобулы, развитой Лифшицем (см. стр. 143, 236). [c.400]


    В гл. I мы рассматривали кристаллографические аспекты проблемы упорядочения в сплавах, а также некоторые результаты термодинамической теории фазовых переходов второго рода. Как известно, феноменологический подход, развитый в термодинамической теории фазовых переходов второго рода, позволяет установить общие закономерности процессов, не прибегая к конкретным модельным представлениям. Однако феноменологическое рассмотрение справедливо в довольно узком температурном интервале, расположенном в непосредственной близости от точки фазового перехода второго рода. Поэтому в тех случаях, когда нас интересует поведение сплава в более широкой области температур и концентраций, приходится привлекать упрощенные модели, позволяющие использовать статистико-термодинамические методы расчета. [c.99]

    В дополнение к адекватному описанию изменений модуля упругости с температурой и временем хранения образца в терминах феноменологической модели с соответствующим подбором параметров, теория сдвигового запаздывания позволяет описать собственно процесс сверхвысокой вытяжки, т. е. вытяжки за пределы состояния, в котором все кристаллиты выстроены в направлении деформации (т. е., когда, согласно данным рентгеноструктурного анализа, достигается полная ориентация с-осей кристаллитов). В частности, образец с выстроенными с-осями рассматривается в теории состоящим из упорядоченно расположенных фибрилл конечной длины. [c.264]

    Как мы увидим дальше, динамический порядок, возникновение динамических структур и их упорядоченное поведение во времени возможны лишь вдали от равновесия. Линейная неравновесная термодинамика, кратко изложенная в этой главе, справедлива лишь вблизи равновесия. Ее основные положения выражаются соотношениями (9.51) и (9.80). Первое описывает сопряжение различных кинетических процессов вследствие отличия недиагональных коэффициентов Ьц 1 ]) от нуля, второе есть математическое выражение теоремы Пригожина о минимуме производства энтропии в стационарном состоянии. Несомненно, что в биологической открыто11 системе реализуются сопряженные процессы. Поэтому общая феноменологическая теория Онзагера — Пригожина позволяет объяснить важные биологические явления. Вопрос о применимости теоремы Пригожина к биологическим системам более сложен. Как мы видели, продукция энтропии а минимальна лишь в тех стационарных состояниях биологических систем, которые близки к равновесию. Эти системы описываются линейными соотношениями (9.51). Но в физике линейная зависимость реакций системы от воздействия, вызвавшего эту реакцию, есть всегда лишь первое приближение, справедливое для малых воздействий. В нашем случае малость означает малое удаление от равновесия. Для рассмотрения биологических систем и их динамической упорядоченности необходимо выйти за пределы линейной термодинамики. [c.327]


    Развивая представление о важности индивидуальных вкладов остатков в формирование а-спиралей, Льюис и Шерага предложили использовать для их количественной оценки термодинамические параметры 8 и а феноменологической теории переходов спираль-клубок синтетических полимеров Б. Зимма и Дж. Брэгга. Параметр 8 представляет собой константу равновесия перехода мономерного звена из неупорядоченной клубковой формы (с) в упорядоченное а-спиральное состояние (Ь), которое включает по крайней мере три предшествующих остатка иными словами, параметр 8 описывает переход. ..Ь, Ь, Ь, с.... ..Ь, Ь, Ь, Ь.... Параметр а является константой равновесия перехода мономерного звена из состояния с, которому предшествуют три (или более) звена в этой же форме, в состояние Ь . ..с, с, с, с... —>. ..с, с, с, Ь.... Состояние Ь более выгодно энергетически, а состояние 8 более предпочтительно по энтропии. Поэтому свободная энергия таких состояний различным образом меняется в зависимости от внешних условий. Теория перехода спираль-клубок базируется на одномерной модели Изинга, которая неприменима непосредственно к трехмерной структуре белка, но может быть использована для описания его денатурированного состояния при отсутствии взаимодействий между остатками. [c.251]

    Эта книга посвящена физико-химической теории многокомпонентных органических природных и техногенных систем. В ней обобщается многолетняя работа, проведенная нами в ИПНХП АН РБ и кафедре технологии полимеров Уфимского технологического института сервиса. Первый вариант работы был издан в 1991 году в издательстве ЦНИИТЭнефтехим под названием Физико-химические основы новых методов исследования сложных многокомпонентных систем. Перспективы практического использования . С того времени многие идеи, развиваемые в этой работе, нашли экспериментальное подтверждение. В работе Пределы науки и фрагменты теории многокомпонентных природных систем , изданной в 1998 году, были рассмотрены методологические и философские аспекты теории. В данном издании я намеренно исключаю дискуссионные философско-методологические вопросы и пытаюсь сосредоточить внимание на естественнонаучных и прикладных аспектах теории. Предпринята гкшытка создания феноменологической физико-химической теории многокомпонентных органических систем, к которым относятся геохимические органические системы, углеводородные системы, нефти, газоконденсаты, полимерные и олигомерные смеси, сложные биогеохимические и космохимические системы. Эти хаотические системы являются не только сложными смесями, но и средой, за счет взаимодействия с которой существуют более упорядоченные структуры, включая живые существа. По моему мнению, многие техногенные и природные системы из-за своей сложности и многокомпонентности не могут быть полностью поняты с позиции дискретного атомно-молекулярного подхода. При этом я не уменьшаю значимость атомно-молекулярной теории, а только констатирую пределы ее применимости при изучении сложных веществ. Кроме того, развивается недискретный, статистический взгляд на любое вещество как единую непрерывную многокомпонентную систему. [c.3]

    Случай рассеяния рентгеновских лучей упорядоченным сплавом типа uAu I представляет собой не только иллюстрацию того, как два, казалось бы, столь различных определения параметра дальнего порядка оказываются полностью эквивалентными. Рассмотренный пример свидетельствует также о том, что представление вероятности заполнения узлов решетки упорядоченной фазы в виде суперпозиции статических плоских волн во многих отношениях может быть более плодотворным, чем традиционное представление упорядоченного состояния через вероятности заполнения подрешеток. Как будет показано в следующих параграфах и в гл. Ill, это в первую очередь относится к феноменологической и статистической теориям фазовых переходов типа порядок — беспорядок. [c.31]

    Рассмотренные модели белкового свертывания содержат ряд общих черт принципиального порядка, наличие которых совершенно неизбежно при изучении явления методами статистической физики и равновесной термодинамики. Во всех модельных описаниях динамики белковой цепи предполагают равновесность и двухфазность процесса, т.е. основываются на теории двух состояний Брандтса [214] (подробно см. гл. 11). В подтверждение этому обычно ссылаются на работы 1960-х и начала 1970-х годов, посвященные экспериментальному исследованию механизма денатурации малых белков. Однако единство моделей в этом отношении отнюдь не следует из существования однозначной трактовки результатов эксперимента. Напротив, большая часть опытных данных, особенно полученная позднее, свидетельствует о более сложном характере процесса. Дело в том, что предположение о двухфазном равновесном механизме свертывания белковой цепи становится неизбежным при выборе чисто статистического, феноменологического подхода, не учитывающего конкретную гетерогенность аминокислотной последовательности и обусловленную ею конформационную специфику. Кроме того, представление белкового свертывания в виде монотонного увеличения популяции одного оптимального состояния при одновременном, точно таком же уменьшении популяции другого оптимального состояния и при отсутствии видимого количества промежуточного метастабильного состояния накладывает существенное ограничение на предполагаемую динамику процесса и упрощает его рассмотрение. В этом простейшем варианте свертывания белковой цепи профиль популяции ( У) выражается зависимостью свободной энергии от степени упорядоченности, имеющей больцмановский вид 1п . Другая общая черта касается представления о нативной конформации белковой молекулы. Во всех моделях важнейшей характеристикой упорядоченного состояния белка считается глобулярность его пространственной организации. Под глобулой подразумевается структура, удовлетворяющая следующим двум условиям. Во-первых, размер глобулы значительно превышает эффективное расстояние действия сил, ее формирующих. Это условие позволяет выразить свободную энергию глобулы через ее объем и поверхность. Во-вторых, глобула предполагается структурно гомогенной, что избавляет от учета гетерогенности белковой цепи и неравномерности упаковки аминокислотных остатков в нативной конформации. [c.301]


    Модель второго типа намного жестче привязана к конкретному объекту. Ей неохотно дается право порождать по аналогии модели других объектов. Феноменологическая (но Р. Найерлсу) модель обычно не функционирует по схеме теория - модель - объект . Она служит упорядочению эмпирических данных об объекте, предсказанию его свойств. Эти модели часто сопровождаются естественным вопросом как осуществить редукцию (сведение) к моделям типа 1, как схватить ту же эмпирию с помощью полноправного идеального объекта  [c.38]


Смотреть страницы где упоминается термин Феноменологическая теория упорядочения: [c.106]   
Смотреть главы в:

Теория фазовых превращений и структура твердых растворов -> Феноменологическая теория упорядочения




ПОИСК





Смотрите так же термины и статьи:

Феноменологические теории



© 2024 chem21.info Реклама на сайте