Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глобула полимерная

    Разрушение нативной глобулы — денатурация белка — отличай от перехода глобула — клубок, описанного в 3.5. Гетеро-полимерный статистический клубок является лишь конечным, отдаленным результатом денатурации. Белковая цепь сравнительно коротка, глобула не имеет флуктуирующей опушки . Превращение такой глобулы в клубок должно быть фазовым переходом второго рода. Однако при термической денатурации белка наблюдаются разрывы, энтальпии и энтропии — АЯ и AS. Характерные значения для разностей АН и TAS порядка 400 кДж/моль. [c.117]


    Клубок и глобула. Полимерная цепь, где взаимодействуют только соседние звенья, сворачивается в клубок, обладающий большим числом конформаций, переходы между которыми происходят в процессе микро-броуновского движения частей цепи. Такой клубок не обладает определенной внутренней структурой, он как бы все время "дышит", причем амплитуда "вздоха" порядка размеров клубка. Взаимное расположение отдельных частей клубка полностью подчиняется статистическим закономерностям. Однако если имеются объемные взаимодействия между [c.87]

    Исследования структуры имеют целью не только выявление механизма процесса. Они способствуют разработке обоснованных эффективных методов и режимов модифицирования мембран для улучшения их проницаемости, селективности и прочностных свойств. Важность структурных исследований определяется тем, что они дают ответ на первый из основных вопросов, с которым и связано исследование механизма,— каким образом происходит перемещение молекул через полимерную мембрану. Ответ на второй вопрос — каким образом достигается селективность процесса разделения, очевидно, также связан с успехами этих исследований. Представления о глобулярно-пачечном строении полимерных тел [51—54] оказались весьма благотворными для объяснения многочисленных экспериментальных данных в различных областях физики, химии и физической химии полимеров, что убедительно свидетельствует о действительном их соответствии реальной структуре полимерных материалов. Основу этих представлений составляет предположение о том, что элементарными первичными надмолекулярными образованиями являются либо глобулы, либо пачки> макромолекул с различной степенью упорядоченности внутри пачки. [c.64]

    Одновременно в кристаллизующемся материале присутствует аморфная фаза, построенная из полимерных глобул, не закристаллизованных пачек , различных дефектов, присущих кристаллическим структурам (например, области поворота пачек в лентах ), В аморфных полимерах вторичная структура характеризуется жидкостной и газокристаллической ориентацией макромолекул внутри пачек . В свою очередь, пачки образуют фибриллярные структуры, различные по форме и размерам. [c.65]

    Вращение цепей происходит при неизменных валентных углах молекулы, атомы которой соединены одинарной связью, и приводит к образованию структур нерегулярной формы (рис. 1.11). Эти структурные формы не существуют в постоянном виде, а непрерывно переходят одна в другую без разрыва химических связей. В результате таких изменений макромолекулы могут либо свертываться, образуя глобулы и клубки, либо выпрямляться. Гибкость полимерной цепи увеличивается с ростом температуры и с уменьщением числа полярных групп. Кроме того, больщое влияние на гибкость макромолекулы оказывают наличие боковых цепей (у разветвлен- [c.33]


    Важную роль играет явление солюбилизации в процессах получения синтетических каучуков и латексов эмульсионным способом. Все основные стадии процесса полимеризации (инициирование, рост, обрыв цепи) осуществляются в мицеллах коллоидного ПАВ-эмульгатора, содержащих солюбилизированный мономер (или смесь мономеров). По мере протекания процесса полимеризации мицеллы превращаются в полимерно-мономерные частицы и далее в глобулы латекса, стабилизированные адсорбционным слоем эмульгатора. [c.85]

    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]

    Здесь показан случай неровной поверхности (допустим, порошка или пленки с шероховатостями), когда сила со стороны растворителя приложена к пояску глобулы, по которому она связана с соседними глобулами, и отделение глобулы от полимерного тела и переход ее в растворитель происходит за счет разрыва пояска связи. [c.334]

    В последние годы были предприняты успещные попытки прямого теоретического расчета кинетики конформационных переходов и усредненных флуктуаций в конкретных белках (М. Карплус). В качестве исходного состояния принимались положения атомов, определенные из данных рентгеноструктурного анализа. Далее рассчитывалась динамика смешения белка исходя из соответствующих значений атом-атомных потенциалов. Для панкреатического ингибитора химотрипсина расчет был выполнен с временным шагом с. Согласно расчету, смещение полипептидных цепей в 0,05 нм достигается уже за время порядка Ю с. Это значение заметно отличается от экспериментального значения 10 с, типичного для белков, -по-видимому, вследствие того, что теория не учитывает влияния среды на динамику макромолекулы. Были рассчитаны также средние отклонения положений ядер в цитохроме с. Для а-углеродных атомов основной цепи они составили 0,07 нм, для других тяжелых атомов 0,085 нм, для гемовой группы 0,051 нм. Эти расчеты подтверждают сделанный ранее теоретический вывод И.М. Лифшица о том, что при определенных условиях свободная полимерная цепь сворачивается в глобулу с плотным конденсированным ядром и рыхлой опушкой . Так, для цитохрома с при переходе от ядра с радиусом 0,6 нм к опушке радиусом 2,2 нм средние отклонения меняются от 0,066 до 0,164 нм. [c.557]

    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]

    В уравнении (1.92) для скорости полимеризации межфазный объем учитывается в модели диффузионного захвата радикалов изолированными полимерными глобулами. Учет реальной пористой структуры, образующейся из полимерных глобул (р> 0,2), при описании межфазного обмена радикалов приводит к значительному усложнению математической модели, практически не изменяя скорости полимериза- [c.65]

    Процесс структурообразования ПВХ складывается из следующих явлений формообразование частиц порошков, укладка глобул в зернах-агломератах с определенной плотностью и спекание полимерных частичек в агломератах при термическом воздействии сушильной среды. [c.117]

    Немаловажным фактором, определяющим свойства высушенного из латекса ПВХ продукта, является способность полимерной фазы размягчаться в процессе сушки и термообработки, вследствие чего полимерные зерна спекаются в более компактные образования. Процесс спекания полимерных частиц характеризуется сложным комплексом взаимосвязанных явлений слипание, аутогезия, перенос вещества и деформация глобул, уплотнение агломерированной системы. Применительно к сушке эмульсионного ПВХ можно выделить две точки зрения на причины и условия спекания полимерных частиц. [c.126]


    Оба ТОЧКИ зрения справедливы для соответствующих условий термообработки, но они не учитывают влияние на процесс слияния глобул испарения воды, которое сопровождает процесс формо- и структурообразования зерен практически в течение всего процесса сушки. Наиболее полно изучен процесс пленкообразования из полимерных дисперсий [39], имеющей, в сущности, ту же природу, что и спекание агломератов полимерных частиц. Однако и механизм пленкообразования трактуется исследователями по разному. [c.127]

    Силам контракции противостоят силы вязкости и упругости полимера, при этом процесс слияния происходит во времени. Как следует из рис. 4.5, в случае гексагональной укладки полимерных сфер, независимо от того, находится полимер в высокоэластическом или вязко-текучем состоянии, процесс слияния глобул в агломерате заканчивается при достижении площади контакта, определяемой величиной центрального угла 2а=60°. Следует заметить, однако, что для большинства синтетических смол, включая и ПВХ, достижение вязкотекучего состояния в процессе сушки возможно только после удаления свободной влаги. Для описания процесса слияния полимерных сфер в вязкотекучем состоянии применимо уравнение Я.И.Френкеля (4.7). В случае высокоэластического состояния полимера описание процесса слияния должно учитывать релаксационные явления при деформации полимерных глобул и уплотнении частиц-агломератов. Количественную оценку действующих сил можно получить из рассмотрения схемы двух контактирующих полимерных сфер (рис. 4.6). [c.128]

Рис. 4.5. Слияние полимерных глобул в высокоэластическом (I) и вязкотекучем (2) состояниях Рис. 4.5. Слияние полимерных глобул в высокоэластическом (I) и вязкотекучем (2) состояниях
    Это давление вызывает деформацию сферы и напряженное состояние полимера, причем в сечении контакта напряжение N = - р. Соотношения (4.9) и (4.10) справедливы и для агломерата полимерных глобул, причем для максимально плотной упаковки угол а изменяется от О до 30°, а угол р - от 30° до а. [c.129]

    В процессе термоусадки давление, а следовательно и напряжение в полимерном материале, изменяется вследствие изменения углов а и Р, а также изменения радиуса кривизны глобул. Кинетику этого процесса с учетом релаксационного характера его протекания можно представить в виде полного дифференциала функции (4.9) по времени  [c.129]

    Вместе с тем глобулярное состояние полимерной цепи характеризуется общими особенностями. Лифшиц [1] рассмотрел гомополимерную глобулу как систему с линейной памятью (см. стр. 143). Энергию цепи можно представить в виде [c.236]

    Естественная физическая идея состоит в предположении о способности глобулы служить неким энергетическим резервуаром. Энергия теплового движения или энергия, приобретенная глобулой при сорбции субстрата, конвертируется в энергию ФСК, в результате чего происходит эффективное понижение энергии активации. Неполная упорядоченность глобулы и малые различия в свободных энергиях упорядоченного и неупорядоченного состояний (порядка 1 ккал/моль) означают наличие конформационных флуктуаций [104, 105]. Косвенные свидетельства в пользу таких флуктуаций состоят в заметном дейтеро-обмене с водородами пептидных связей —СО—NH— при температурах, значительно меньших температуры денатурации белка, при которой водородные связи рвутся [104]. О том же говорит повышенная жесткость ФСК по сравнению со свободным ферментом— ФСК труднее расщепляется трипсином [105—107]. По-видимому, связывание субстрата уменьшает конформационную подвижность глобулы. Наличие значительных флуктуаций следует также из общей феноменологической теории полимерной глобулы, развитой Лифшицем (см. стр. 143, 236). [c.400]

    Вопрос о структуре эпоксидных полимеров является частным случаем проблемы структуры аморфных стеклообразных тел, в большинстве которых также существуют глобулы сходных геометрических размеров. В литературе тому вопросу уделяется большое внимание, однако, нес.мотря на интенсивные работы г использованием различных методов, не удалось обнаружить областей повышенной упорядоченности в неорганическом стекло и в стеклообразных полимерах, а также каких-либо явлений, которые требовали бы для своего объяснения представления об обязательном существовании в полимерных сшитых стеклах различной природы упорядоченных областей [85. с. 8]. [c.60]

    Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефииов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С1з в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора ИСЦ— [c.31]

    Другие ферменты предпочитают атаковать срединные связи субстрата на достаточном удалении от концов полимерной молекулы. Активный центр таких ферментов можно упрощенно пред-ставит . в виде длинной ложбины или расп елипРз1 па поверхности белковой глобулы, вдоль которой и располагается субстрат, в то время как его концевые группы могут выходить за пределы активного центра или даже молекулы белка. Такие ферменты называют эндоферментами , пли действующими по эндотипу . [c.77]

    При наличии границ раздела фаз полимер — форма или полимерный рой — среда может развиваться процесс укладки макромолекул по поверхностным границам раздела в достаточно протяженные ориентированные участки со слоистой структурой. Неплавкие термореактивные полимеры в процессе термолиза сохраняют свое надмолекулярное строение, копирующее исходное образование. Таким образом, стеклоуглерод, как отмечается в работе [123] представляет собой достаточно плотный конгломерат полиэдрических глобул 20-40 нм в поперечнике со сферической внутренней полостью. При этом поверхностный слой образцов представляет собой высокоориентированную слоистую пленку толщиной 15—25 нм. Эта пленка, являясь подобием реплики, изучаемой при электронно-микроскопических исследованиях, определила, очевидно, модель Дженкинса [124], который представляет структуру стеклоуглерода в виде беспорядочно переплетенных углеродных лент, состоящих из мйкрокристаллитов, между которыми расположены игольчатой формы поры (рис. 83). Подобная форма пор обусловлена лентообразностью сильно искаженных слоев, образующих ленточно-сетчатую структуру фрагментов стеклоуглерода. Такая структура стеклоуглерода, термообработанного при 500 °С, сохраняется и после его обработки при 2700 °С, когда уже можно наблюдать участки с идеальной упорядоченностью графитовых сеток [124]  [c.209]

    Ио полимерные цепи могут в результате теплового движения их звеньев принимать разнообразные конформации из которых крайними являются линейная жесткая палочка и предельно гибкая цепь, стремящаяся свернуться в клубок. Цень сворачивается в клубок, так как это отвечает уменьшению поверхности и, следовательно, свободной энергии. Ограниченная гибкость реальной цеппой макромолекулы мешает ей npHHiiMaTb всегда сферическую форму" Однако в ряде случаев можно наблюдать возникновение сферических форм, или глобул, образованию которых способствуют гибкость цепи и ус.аовця, обеспечивающие превышение Энергии Внутримолекулярного взаимодействия ьад межмолекулярным. Поэтому, в зависимости от условий, жесткие молекулы полимера вследствие сильного внутримолекулярного взаимодействия могут сворачиваться а глобулы (поливинилхлорид, феноло-формальдегидные смолы), Гибкие, но слабо взаимодействующие неполярные макромолекулы обычна находятся не в глобулярном, а с развернутом состоянии. [c.93]

    В результате опытов, проведенных при полимеризаиии ВХ в массе, установлено, что с повышением интенсивности перемешивания в аппарате с мешалкой возрастает число частиц//q, уменьшается средний диаметр глобулярных частиц d [29, 30] (рис. 1.19). Этот факт можно объяснить тем, что в условиях перемешивания обтекание частиц потоком жидкости из-за разности плотностей ПВХ и ВХ препятствует осаждению зародышей на частицы, и из них образуются новые полимерные частицы. Возможность влияния перемещения глобул внутри капли на формирование пористой структуры изучена в [31]. [c.47]

    В общем случае поток радикалов J 2 определяется диффузией радикалов через мономер с коэффициентом диффузии Ох и захватом радикалов поверхностью полимерных глобул. Используя модель полупроточной гауссовой цепи [117], для коэффициента диффузии радикалов в мономер получаем  [c.64]

    При захвате радикалов коэффициент диффузии Ох определяете средним временем пребывания радикалов в мономерной фазе, пс кольку для диффузии растущих цепей 1 (1) коэффициент зависит времени О1 [ ц(0]- В случае быстрого захвата радикалов полимерш ми глобулами для усредненного коэффициента диффузии получае О1 10" м /с. Эта оценка получена в предположении, что концентр ция полимерных глобул [Л о] = и конверсия р=0,01. В обще  [c.64]

    В отличие от суспензионного ПВХ эмульсионный и микросуспензионный ПВХ выделяют, минуя стадию механического обезвоживания, непосредственно сушкой латексов в распылительных сушильных аппаратах. В процессе сушки капельки со взвешенными в жидкой фазе полимерными частицами превращаются в твердые частицы, представляющие собой зерна-агломераты сухих латексных глобул (рис. 4.1). Дисперсный состав, форма, пористость и прочность этих вторичных частиц в большой степени определяют свойства порошков ПВХ (сыпучесть, способность их к последующей переработке в материалы и изделия), а также технологические и эксплуатационные характеристики последних. Причем процесс формо- и структурообразования и конечные свойства сухого продукта зависят как от свойств самого объекта сушки (латекса, дисперсии), так и от условий проведения процесса распыления и сушки. [c.117]

    Полимерные латексы представляют собой устойчивые взвеси в воде сферических полимерных глобул (латексных частиц) диаметром, от 0,05 до 2 мкм (для эмульсионного ПВХ 0,05- 0,15, для микросуспенэи-онного - 0,2 - 2 мкм), которые значительно крупнее частиц коллоидных растворов, но существенно мельче частиц обычных суспензий или расслаивающихся взвесей. Полимерные частицы в зависимости от температуры перехода в высокоэластическое (Г < 0 < Г ) или вязкотекучее (0> 7/) состояние и температуры среды могут образовывать жесткую или эластичную корку на поверхности капли латекса. Кроме Того, в водной фазе содержится растворенный эмульгатор - высокомолекулярное соединение типа синтетического мыла (натриевые или Калиевые соли жирных кислот, сульфонаты, алкилсульфонаты и т.п.), т.е. при упаривании водная фаза может постепенно трансформироваться в Коллоидный раствор. Таким образом, латексы одновременно Обладают свойствами суспензий и коллоидных растворов, и структурные превращения при их сушке могут идти по любому из рассмотрен- Ых механизмов. [c.119]

    Другим аспектом структурообразования полимерного зерна, образующегося при высыхании капли латекса, является плотность упаковки Латексных глобул в агломератах, которая, так же как и объем пустот в зерне, определяет такое важное технологическое свойство полимерного порошка, как количество связанного пластификатора при последующей переработке через пластизоли. Чем больше суммарная пористость зерна, тем выше вязкость пластизоля при одинаковом массовом соотношении полимера и пластификатора. [c.125]

    Для оценки координационного числа упаковки частиц в объеме агломерата авторы [125] экспериментально определяли пористост . частиц, полученных сушкой монодисперсных латексов сополимероь (при температуре, исключающей размягчение полимерной фазы), пикнометрическим способом с использованием ртути и метанола d качестве иммерсионных жидкостей. Исходя из условий заполнения метанолом всех пор и пустот в порошке и зернах, а ртути - только пор порошка и пустот в зернах, определяли пористость укладки глобул  [c.126]

    Ризави [246] полагает, что при высыхании капли латекса ПВХ, происходит коагуляция полимерных глобул в сферический комок. При попадании в зону повышенных температур латексные частицы спекаются на поверхности комка при условии [c.127]

    Принципиальный этап развития теории глобула — клубок составили работы Лифшица, Гросберга и Хохлова [71], которые решили задачу о компактизации макромолекулы, учтя неоднородность распределения полимерных звеньев в клубке. Эта теория привела к результатам, отличающимся от простой теории Птицына — Эйзнера, и лучше согласовалась с результатами машинного эксперимента по исследованию перехода клубок-глобула, однако была слишком сложна, чтобы ею непосредственно можно было бы пользоваться для интерпретации экспериментальных данных. [c.123]

    Мы уже говорили об отличпп полимерно глобулы от статистического клубка (с. 78). В белке вследствие полифункциональности аминокислотных остатков в обра.човании глобулы участвуют разнообразные силы. Разнородность звеньев п взаимодействий определяет строение глобулы— апериодичность кристалла . [c.105]

    Высокая чувствительность полиокса к сдвиговым воздействиям вынуждает применять специальные методы для приготовления растворов [133]. Рекомендуется, например, предварительное приготовление паст илп суспензий полимера в плохих растворителях — изопропиловом или этиловом спиртах, глицерине, концентрированных растворах солей — и их последующее смешение с водой. При этом используют специальные конструкции безградиентных мешалок. Предварительное набухание полимера является, видимо, основным фактором в таком способе, поскольку позволяет значительно снизить давление набухания внутри полимерной глобулы, способное приводить к деструкции непосредственно в стадип растворения. [c.278]


Смотреть страницы где упоминается термин Глобула полимерная: [c.50]    [c.107]    [c.94]    [c.121]    [c.45]    [c.116]    [c.64]    [c.65]    [c.126]    [c.128]    [c.404]    [c.121]    [c.60]   
Физика растворов (1984) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Глобулы

Объемные взаимодействия и переходы глобула—клубок в полимерных макромолекулах



© 2024 chem21.info Реклама на сайте