Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система водные органические

    Данная книга построена таким образом, что ее могут использовать химики-органики в практической работе. С этой целью приводятся типичные экспериментальные методики наиболее часто применяемых МФК-реакций, а для менее важных реакций по возможности также приводятся имеющиеся данные об условиях их проведения. Поскольку эту новую область химии активно изучают в различных аспектах и поскольку многие плоды этой работы еще не собраны, то все последующее изложение представляет читателю не последнюю стадию развития данного метода, а скорее введение в него. Основные понятия МФК приводятся во введении к гл. 1. Затем излагаются общие фундаментальные данные об ионных парах и факторах, влияющих на экстракционные равновесия в системе водная фаза/органическая фаза. В гл. 2 обсуждаются различные варианты механизма МФК, включая оценку роли катализаторов и отличие межфазного катализа от мицеллярного. Основное содержание книги —гл. 3 — представляет собой изложение данных о практическом использовании МФК. Весь материал сгруппирован по типам реакций, даны обзорные таблицы и подробные методики проведения типичных, практически важных реакций. [c.10]


    Предлагается изучить комплексообразование в системе u — этилендиамин, применяя в качестве растворителя водно-органическую смесь, состав которой указывает преподаватель, например смесь, содержащую 95% воды и 5% изопропилового спирта. Работу выполняют аналогично заданию 3 эксперимента 7.8, в кювету сравнения наливают водно-органический растворитель. [c.126]

    III.Фосфорилирование электрофилов элементным фосфором в системе водный раствор КОН — органический растворитель — катализатор межфазного переноса [c.167]

    Типичная методика приводится ниже [559]. См. также Синтезы органических препаратов [1850]. Следует упомянуть, что прй использовании системы водный КМпО аликват 336 качественная проба на ненасыщенные жиры дает лучшие результаты, чем в отсутствие катализатора [1271]. [c.383]

    Получили дальнейшее развитие исследования в области молекуляр-но-статистической теории других типов флюидных систем. Разработана модель для описания свойств водно-органических растворов солей, изучена растворимость кислых газов (НгЗ, СО2) в сложных растворителях (солевых растворах аминов), изучались системы полимер - мономер - растворитель. Для названных типов систем получены экспериментальные данные, подтверждающие теоретические выводы. Продолжались исследования нефтегазовых систем, разработана модель агрегации асфальтенов, определены некоторые факторы, влияющие на их осаждение. [c.110]

    Выходы в данной реакции обычно невелики частично вследствие того, что процесс приходится проводить в двухфазных водно-органических системах. Этот фактор можно исключить, используя в качестве источников фенильных радикалов такие [c.304]

    Подвижная фаза. Бумажную хроматографию можно рассматривать как метод распределительной хроматографии. Об этом свидетельствует часто наблюдаемое на практике совпадение коэффициентов распределения, измеряемых прямым путем, с рассчитанными на основе значений (разд. 7.3.1.2 и [И]). При выборе подвижной фазы исходят из тех же соображений, что и в методе распределительной хроматографии, т. е. используют миксотропные ряды растворителей. Стационарная фаза в бумажной хроматографии вполне определенная — вода. Вторая фаза должна или не смешиваться с водой, или смешиваться очень ограниченно. В качестве подвижной фазы применяют фенол, крезол, -бутанол и др. Эти растворители предварительно насыщают водой. Для обеспечения насыщения целлюлозно-водной фазы подвижной фазой бумагу перед проведением разделения следует обработать парами растворителя, подвесив ее над сосудом с растворителем. Для достижения равновесия между стационарной и подвижной фазой в сосуд помещают ванну с водой или оборачивают стенки сосуда влажной фильтровальной бумагой. Выбор несмешивающихся с водой растворителей (необходимых для проведения разделения гидрофильных веществ) очень невелик, поэтому в качестве подвижной фазы применяют растворители, смешивающиеся с водой, даже воду или растворы электролитов, тем самым расширяя область применения бумажной хроматографии. В основе разделения лежат явления адсорбции. По аналогии с хроматограммами, полученными методом обращенных фаз, механизм распределения в данном случае следующий распределение происходит между стационарной фазой (целлюлоза — вода) и подвижной фазой (вода или соответственно гомогенная система вода — органический растворитель). [c.356]


    Здесь речь идет о циклических полиэфирах 17 — краун-эфирах, открытых Педерсеном [2с] в 1960-х годах (см. разд. 4.2.2). Полость внутренней части молекулы 17 достаточна по размеру для того, чтобы там разместился ион калия, а наличие шести атомов кислорода обеспечивает возможность образования прочной системы координационных связей, как это показано в структуре 18, вполне заменяющих гидратную оболочку (схема 2.8). Поэтому комплексы типа 18 уже достаточно хорошо растворимы в органических растворителях, в чем легко убедиться с помощью простого эксперимента если взять двухфазную систему ярко-окрашенный водный раствор перманганата калия — бесцветный бензол и добавить в нее небольшое количество краун-эфира 17, то бензольный слой немедленно окрашивается в интенсивный малиновый диет, Понятно, что в такой системе окисление органического [c.82]

    В системе вода—органическая среда ПАВ распределено между обеими фазами и поверхностью раздела. Чем более гидрофильно вещество, тем больше работа адсорбции его при переходе из органической фазы на поверхность раздела (—Д х ) и наоборот, чем более оно олеофильно, тем больше работа адсорбции вещества при переходе из водной фазы на поверхность раздела (—Ац. ). Следовательно, гидрофильно-олеофильный баланс ПАВ можно выразить в виде отношения  [c.22]

    Для проведения электрохимических реакций с участием органических соединений в гомогенной системе часто используют органические растворители, их смеси или водно-органические растворители, позволяющие создавать достаточно концентриро- [c.26]

    Анионообменники в ОН-форме претерпевают деаминирование и разложение в водно-органических растворителях. Потеря обменной емкости возрастает с увеличением концентрации органического растворителя в системе (при равных условиях больщая потеря обменной емкости наблюдается в абсолютном спирте или ацетоне, чем в воде). [c.107]

    Прекрасным растворителем для коксохимических продуктов является ацетон. Этот малотоксичный растворитель с исключительно слабыми кислотными свойствами (константа диссоциации равна 10 ) [3] позволяет в своей среде титровать пиридиновые основания. При этом, стремясь снизить токсичность раствора, мы применили ацетон в смеси с водой. Наличие в системе воды до 23— 25% позволяет применять электроды без специальной подготовки. Это, в свою очередь, позволяет проводить за-меры на одном рН-метре как в водной, так и в водно-органической средах, что облегчает работу в заводских лабораториях. [c.160]

    Измерение растворимости труднорастворимых твердых веществ в водных растворах комплексообразующего агента — один из самых старых методов изучения равновесия в растворе. В конце прошлого столетия этим способом были исследованы молекулярные комплексы пикриновой кислоты [5, 51], а несколько лет позднее прямой метод [35, 46] и метод конкурирующей растворимости [9, 14, 28, 29] были использованы для определения констант устойчивости комплексов ионов металлов. Этот метод был также применен для изучения равновесия в смешанных водно-органических растворителях [22, 54, 78] и в системах, насыщенных по отношению к труднорастворимым жидкостям или газам. [c.230]

    Для того чтобы облегчить экстракцию ассоциированных ионных пар в органическую фазу в водно-органических двухфазных системах, водная фаза должна быть по возможности концентрированной. Хотя среди МФК-реакций очень мало экзотермичных, все же разумно при проведении неизвестных реакций соблюдать предосторожности — иметь наготове баню со льдом или добавлять реагент небольшими порциями. В присутствии концентрированных растворов едкого натра часто образуются устойчивые эмульсии. В некоторых случаях разрушению эмульсии помогает нейтрализация или центрифугирование, однако, чтобы убрать избыток щелочи, часто проще промыть смесь несколько раз водой. Такая промывка способствует разделению фаз. Следует помнить, что при использовании R4N+HSO4 для нейтрализации необходимо добавлять больше чем один эквивалент щелочи. [c.94]

    Физические свойства растворов щелочей. В двухфазных системах, водной фазой которых являются концентрированные растворы щелочи, плотности органической и водной фаз сильно отличаются друг от друга. В табл. 4 приведены плотности некоторых наиболее распространенных органических фаз, а также 50%-ных растворов КОН и NaOH. Из приведенных данных следует, что условия перемешивания при использовании в качестве [c.25]

    Реакцию проводят в двухфазной системе вода — органический растворитель . Нуклеофильная компонента в виде соли кислоты находится в водной фазе, а алкилирующий агент— преимущественно в органической. Указанные катализаторы хорошо растворимы в органических растворителях и способны увле- [c.174]


    В рамках подхода были исследованы системы вида "Зс1- и 4 -ионы -а-окси- и а-аминокислоты - Н2О - ДАР (диполярный апротонный растворитель АН, 0М80, ВМР, ИМРТА)". Концептуальный вывод - как результат предложенного подхода сдвиг равновесия при увеличении содержания диполярного апротонного растворителя в водно-органической смеси определяется в приблизительно равной мере пересольватацией реакционных центров и структурным фактором, включающим в качестве основного вклада реорганизацию растворителя вокруг внесенной в полость частицы. [c.151]

    Скорость реакции в этом случае зависит как от скорости диффузии через поверхность раздела фаз, так и от скорости гомогенной реакции в органической фазе. Важными факторами являются энергия разрушения водной оболочки аниона и энергия пересольватации органическим растворителем. Следует отметить, что при переходе аниона нз водной в органическую фазу наблюдается кардинальное изменение сольватации оние-вых ионов. Анион перешедшей в органическую фазу ионной пары 0+ V крайне мало сольватирован, что даже дало повод называть реакции таких ионных пар реакциями голых анионов (см. обзор [2]). Очевидно, что для таких реакций выгоднее всего использовать возможно более липофильные катионы и малополярные растворители. Классическим примером переноса анионов из водной фазы в органическую является окрашивание бензольного слоя в малиновый цвет в системе водный раствор КМЛО4 — бензол при добавлении метилтриок-тиламмонийхлорида [3]. В настояш,ее время такой малиновый бензол используют для окисления многих органических соединений. [c.13]

    СН2)зКН2 — (NH2, аминосиликагель) — используется для обращение- и нормально-фазовой хроматографии. В водных подвижных фазах сорбент может найти применение как слабый анионообменник для разделения кислот. Часто используется для хроматографии сахаров в водно-органических системах. Следует избегать использования сорбатов, содержащих альдегидные или кетогруппы, которые могут образовывать с аминогруппами сорбата шиффовы основания  [c.32]

    В анротоииой среде наблюдаются две одноэлектронные ста дии восстановления (уравиеиие 2.53 К — углеводород), подобные процессам, описанным для простой системы (см. разд. 2.2.2). В водно-органической среде вода может протони-ровать аи иои-радикал, образовавшийся иа первой стадии Было установлено, что при этом протекают реакции, показанные по схеме (2.54). [c.56]

    В экстракционных системах с органическими раств<фителями, характеризующимися низкой диэлектрической проницаемостью, часто наблюдается явление образования ионных пар. Примером тому является рассмотренная выше экстракция железа(111) из водного раствора хлороводородной кислоты в МИБК. [c.226]

    Неподвижные фазы в эксклюзионной хроматофафии выбирают для решения конкретной аналитической задачи. Первоначально устанавливают, какая система растворителей может быть использована для анализа (водная или водно-органическая), что и определяет тип сорбента. Так, например, разделение водных смесей проводят на сшитых декстранах (сефадекс) или полиакриламиде (биогель Р). С органическими растворителями разделение проводят на гидрофобных полистиролах с различной степенью сшивки (стирогель, порагель, биобид С). Подобные гидрофобные гели обладают хорошей разделяющей способностью только в том случае, если полимер набухает в органическом растворителе. Такие набухшие гели неустойчивы к давлению, скорость потока очень низка. Для эксклюзионной хроматофафии при высоких давлениях колонки заполняют устойчивыми к давлению неподвижными фазами с жесткими матрицами — силикагелями. Недостаток таких сорбентов — высокая адсорбционная активность, которую можно подавить силанизацией поверхности либо выбором подходящего по полярности элюенга (см. разд. 8.7.1). Например, используя в качестве подвижной фазы метиленхлорид ипи тетрагидрофуран, на силикагеле можно разделить по молекулярным массам попистиропы. [c.326]

    Если один из компонентов в системе кремнезем—органический коацерват подвергается полимеризации как раз в тот момент, когда жидкие капельки коацервата выделяются из водной фазы, то такие капельки затвердевают в виде сферических частиц небольшого размера. После выжигания органического вещества получаются сферические частицы пористого кремнезема, которые при соблюдении некоторых условий могут оказаться очень однородными по размеру. Например, когда при pH 2 6 %-ный раствор поликремневой кислоты, приготовленный добавлением раствора силиката натрия с отношением Si02 МагО [c.544]

    Ларсон предложил использовать двухслойные, предварительнс очувствленные формы, в которых нижний слой создавался диазо смолой, а верхний —окрашенным прочным полимером (поливинил формалем, полиамидом, ПВА, силиконом, эпоксидной смолой и др.) [пат. США 3136637 пат. Великобритании 944276]. При проявле НИИ водно-органической системой полимер удаляется вместе с ниж ним слоем такая офсетная форма позволяет получать высокие ти ражи отпечатков. В случае эпоксидной смолы для полноты прояв ления наружный слой должен обладать низкой ММ, что, однако, н( позволяет достичь высокой износостойкости форм. Поэтому реко мендуется эпоксидный слой после проявления дополнительно отверждать он полимеризуется под действием комплекса ВРз-этанол амин, который наносят в водно-этиленгликолевом (8 2) растворе после испарения растворителя форму кратковременно выдерживают при 120—250 °С [пат. США 4292396]. [c.112]

    Разделение в последних системах происходит за счет комбинации механизмов разделения и адсорбции, хотя до конца они не поняты. Даже шривитые фазы, такие, как is, хорошо адсорбируют некоторые количества органических растворителей из водно-органической подвижной фазы, образуя жидкую неподвижную фазу in situ [40, 54, ПО, 111]. Природа таких адсорбированных слоев может изменяться с изменением концентрации органического растворителя в подвижной фазе. Так, компоненты смеси стероидов, предварительно разделенные традиционной распределительной жидко-жидкостной хроматографией после введения в колонку, заполненную фазой is, элюируются в нормально-фазном порядке при использовании элюента метанол—вода (60 40), но р обращенно-фазном порядке, если отношение метанол —вода меняется на 40 60 [115]. Такое обращение порядка элюирования было бы маловероятным, если бы единственным механизмом, действующим в этой хроматографической системе, была твердофазная адсорбция (гидрофобное взаимодействие). [c.74]

    Нитратные комплексы тория легко поглощаются сильноосновными анионообменниками из водно-органических сред с высоким содержанием органического растворителя [25]. Система ацетон — HNO3 более эффективна по сравнению с системой СН3ОН—HNO3. В растворах, содержащих ацетон, торий отделяется от всех других элементов, за исключением Pd, Pb, Au и Bi [26]. [c.230]

    Среди огромного количества разнообразных окислителей наилучшие результаты для превращения сульфидов в сульфоксиды достигаются при использовании метапериодата натрия КаЮ4, А<е/и<з-хлорпербензойной кислоты и трет-бутилгипо-хлорита. Среди них наиболее широко применяется 0,5 М водный раствор метапериодата натрия. Этот реагент обеспечивает очень высокую селективность окисления сульфидов до сульфоксидов практически без примеси сульфона и других побочных продуктов, если окисление проводится при О С в бинарной системе вода — органический растворитель (метанол, диоксан, ацетонитрил)  [c.317]

    Занимаясь поиском путей активаций слабонуклеофильных анионов на примере аниона тиоуксусной кислоты, мы изучили взаимодействие тиоацетат-аниона и фенилацетилена в двухфазной системе с использованием макроциклического полиэфира (дибен-зо-18-крауна-6) и солей тетраалкиламмония [353]. Захватывая катион металла в прочный комплекс, краун-эфиры создают повышенную концентрацию обнаженного аниона сильного основания (щелочей, алкоголятов) или присутствующего в среде нуклеофила (Н8-, 8 -, КЗ и т. п.), что существенно облегчает нуклеофильное присоединение таких анионов к тройной связи. Реакция фенилацетилена с тиоацетат-анионом в присутствии дибензо-18-крауна-б легко проходит при температуре 70—80° в водно-органической среде (органической фазой служил избыток фенилацетилена) [353]  [c.129]

    Часть . Водные органические системы. Для 456 систем средняя величина а г равна 0,388 при среднеквадратичном отклонении 0,136. У примерно половины систем значения параметров находились вблизи 0,3 и у половины лежали в пределах от 0,56 до 0,6. Для 48 систем а 2 < 0,1 или >0,9, в силу чего эти системы были исключены из группы, имеющей средние значения. Кроме того, у ряда систем некоторые величины параметров значительно выходили за пределы указанного диапазо- [c.206]

    Все это относится к водным, органическим или смешанным системам, в которых возможна диссоциация с образованием заряженных частиц. Однако кавитационный эффект в неполярных средах также пр Иводит к химичеоним превращениям в присутствии высокомолекулярных компонентов. Цри этом протекание электрохими- [c.263]

    Помимо высокой устойчивости, литиевые растворы гораздо более совместимы с водорастворимыми органическими веществами, чем натриевые или калиевые. Айлером исследованы состарившиеся в течение недели системы водных полисиликатов лития, полученные смешением растворов низкомолекулярной кислоты и гидроокиси лития. В этих системах определяли изменение содержания Растворимого кремнезема во времени. По скорости взаимодействия Нолисиликатов лития с молибденовой кислотой было определено, то размер коллоидных частиц, самопроизвольно образовавшихся Ри получении полисиликатов, увеличивается с возрастанием модуля. Эта связь прослеживается до модуля 10. Отсюда следует, что [c.69]

    В даухфазных системах (водный ряствор окислителя и катализатора - фаза органического субстрата) алкиларены окисляются примерно в 10 раз быстрее по сравнению о некаталитическими реакциями. [c.66]

    При подборе оптимальных условий определения варьировались условия опыта и системы растворителей. Потенциометрическое титрование проводилось как в водно-формоловой среде, так и в различных смешанных водно-органических средах в присутствии формалина. Применявшаяся трехкомпонентная система растворителей состояла из воды, органического растворителя и формалина в соотношении 40 40 20 объемн. %. В качестве среды для титрования карбоксильных групп были использованы следующие классы органических растворителей спирты (метанол, этанол, пропанол и бутанол), кетоны (ацетон и метилэтилкетон), нитрилы (ацетонитрил), амиды (диметилформамид). Указанным методом были проанализированы следующие аминокислоты аланин, серии, лейцин, валин, а-фенил-Р-аланин, трип- [c.104]

    Возможности этого метода в отношении разделения близких гомологов хорошо видны на примере двух аминобензолсульфо-натов, которые хроматографировали в водно-органической системе при постоянной ионной силе раствора (рис. 41.3) ив градиенте хлорида лития (рис. 41.4). [c.150]


Смотреть страницы где упоминается термин Система водные органические: [c.166]    [c.61]    [c.402]    [c.179]    [c.168]    [c.32]    [c.45]    [c.135]    [c.128]    [c.40]    [c.163]    [c.157]    [c.410]    [c.150]   
Фазовые равновесия в химической технологии (1989) -- [ c.206 ]




ПОИСК







© 2025 chem21.info Реклама на сайте