Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки малых молекул

    Мономерными единицами, из которых построены белки, являются 20 а-аминокислот. Эти малые молекулы наделены свойством, общим для всех молекул, способных к полимеризации они содержат по меньшей мере две разные химические группы, способные реагировать друг с другом с образованием ковалентной связи. У аминокислот такими группами служат аминогруппа (—ЫНг) и карбоксильная группа (—СООН), а связь, которой определяется образование белкового полимера, представляет собой пептидную (амидную) связь. Образование пептидной связи можно представлять себе как отщепление молекулы воды от присоединяющихся друг к другу —СООН- и —NH2-гpyпп [уравнение (2-7)]. В водной среде равновесие в реакциях такого типа сдвинуто в сторону образования свободных аминокислот, а не пептида. Следовательно, синтез пептидов (как в естественных условиях, так и в лаборатории) осуществляется непрямым путем и не сводится к простому отщеплению воды. [c.80]


    Поляризация флуоресценции. Важной характеристикой фотолюминесценции является поляризация флуоресценции. Каждую молекулу можно рассматривать как колебательный контур — элементарный осциллятор, который способен поглощать и испускать излучение не только вполне определенной частоты, но и с определенной плоскостью колебания. Если на вещество падает поляризованный свет, то он преимущественно возбуждает те молекулы, в которых направление колебания осциллирующих диполей совпадает с направлением электрического вектора возбуждающего светового пучка. Поэтому несмотря на то что молекулы в растворе ориентированы хаотично, возбуждению подвергаются лишь те из них, которые обладают соответствующей ориентацией. Если.время жизни возбужденного состояния велико по сравнению со временем, необходимым для дезориентации молекул вследствие вращения, этот процесс дезориентации происходит еще до того, как появится заметная флуоресценция. Если же скорость вращательного движения мала по сравнению со временем жизни возбужденного состояния, то свет флуоресценции испускается до завершения дезориентации. При этом осцилляторы, ответственные за флуоресцентное излучение, ориентированы в той же плоскости, в которой они были ориентированы в момент поглощения, так что флуоресцентное излучение оказывается частично поляризованным. В очень вязких растворителях даже малые молекулы могут сохранять ориентацию за время испускания флуоресценции. Крупные молекулы, такие, как белки, сохраняют свою ориентацию в течение периода времени, который достаточно велик по сравнению со временем испускания флуоресценции, поэтому их флуоресценция частично поляризована. Степень поляризации флуоресценции определяется по формуле [c.56]

    Одним из важных следствий гидрофобных взаимодействий, приводящих к образованию гидрофобной области (ядра) или областей в структуре белка, является связывание белками малых молекул неполярного характера. Как будет показано в дальнейшем, гидрофобные области являются местами связывания различных неполярных молекул углеводородов, красителей, жирных спиртов, кислот и других ПАВ. [c.19]

    Исследования с помощью ЯМР были посвящены трем основным аспектам структуры белков в растворах 1) прямое изучение структуры самой молекулы белка при этом, в частности, особое внимание уделялось эффектам, вызванным взаимодействиями цепей в нативном ИЛИ свернутом состоянии, и процессами развертывания или денатурация 2) связывание с белками малых молекул, включая субстраты, ингибиторы, кофакторы и сами растворители 3) исследование активных парамагнитных субъединиц ферментов и белков-переносчиков электронов путем изучения их влияния на химические сдвиги соседних протонов и на релаксацию магнитных ядер растворителя или других ассоциированных с белком молекул. Последнее направление было одним из самых ранних аспектов применения ЯМР в биологии, но мы остановимся на нем очень кратко, поскольку наши главные интересы состоят в определении структуры самого полимера как такового. [c.347]


    Молекула белка Малые молекулы [c.144]

    В последние годы рентгеноструктурный анализ широко применяется Для определения структуры молекул белков и нуклеиновых кислот. Длины и углы связей, точно установленные для малых молекул, ис-, лользуются как стандартные значения в предположении, что они сохраняются такими же и в более сложных полимерных структурах. Одним 3 этапов определения структуры белков и нуклеиновых кислот является построение молекулярных моделей полимеров, согласующихся с рентгеновскими данными и сохраняющих стандартные значения длин связей и валентных углов (рис. 4-19, ) [71]. [c.183]

    В длинные цепи (например, белки). Малые молекулы обычно состоят из 10 — 50 атомов, связанных строго упорядоченным образом. Полимерные молекулы содержат большое количество мономерных звеньев из малых молекул и в сотни-тысячи раз превышают их по своим размерам. В каждой клетке можно обнаружить приблизительно 750 типов малых молекул и до 2000 разных видов макромолекул. [c.11]

    МИД, возникают положительно заряженные поверхности, образованные катионными головками ПАВ. Под действием кулоновских сил притяжения ионы брома собираются вблизи четвертичных атомов азота. Вокруг мицеллы формируется так называемый слой Штерна, где и проявляются наиболее интересные особенности химии мицелл. Внутри мицелла содержит очень мало молекул воды и образует углеводородное ядро. Именно это различие в полярности между внутренней частью и поверхностью делает мицеллы сходными с глобулярными белками. Полярность мицеллярных поверхностей в общем случае близка к полярности белков и занимает промежуточное положение менаду водой и этанолом. Поскольку активный центр фермента, очевидно, вовсе не полярен, даже когда фермент растворим в воде, весьма полезно и необходимо изучение мицелл [154, 155]. [c.284]

    Связывание кислорода гемоглобином демонстрирует особые свойства, которые может проявлять белок в реакциях присоединения. В отличие от большинства реакций с участием малых молекул сродство белка к лиганду может возрастать по мере присоединения все новых молекул лиганда. [c.211]

    Однако, если не позаботиться о том, чтобы все определяемое вещество в пробе было в свободном виде, тогда предварительная обработка (или хранение) пробы может существенно влиять на результат. Тироксин (Т4) и многие другие малые молекулы почти полностью связаны с белком, ио вытесняются с помощью неэтерифицированных жирных кислот. Поскольку эти жирные кислоты образуются при хранении пробы из-за воздействия липаз, то определение тироксина может стать скорее способом оценки возраста пробы, чем уровня определимого вещества. [c.602]

    Весьма важное место принадлежит аффинной хроматографии [116, 117]. Она основана на использовании особых адсорбентов, специфически взаимодействующих с макромолекулами и избирательно удерживающих данный вид макромолекул (отсюда и название метода). Примером, о котором уже говорилось в разд. Г.10, служит адсорбция комплементарных фрагментов молекулы нуклеиновой кислоты на иммобилизованной ДНК. Аффинная хроматография используется также для очистки ферментов, антител и других белков, способных прочно связываться со специфическими малыми молекулами. [c.161]

    Этот аспект изучения взаимодействий между липидами и белками мало затрагивался в сфере технологии. Важное значение этих взаимодействий для структуры и функции клеточных мембран и плазматических липопротеинов послужило стимулом многочисленных исследовательских работ на модельных системах. Эти работы позволили приобрести хорошие общие знания о молекулярных ассоциациях. Таким образом, здесь приводятся последние сведения о видах взаимодействий между липидами и белками, полученные в результате модельных исследований. Большинство биологических систем находится в водных средах, и во многих технологических процессах вода наиболее часто используется в качестве растворителя. Кроме того, вследствие особой структуры липидов белки больше взаимодействуют с липидными фазами, чем с изолированными молекулами. Здесь будут показаны структура липидных фаз в гидратированной сре- [c.306]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]


    Белки, взаимодействующие с малыми молекулами 556 [c.9]

    БЕЛКИ, ВЗАИМОДЕЙСТВУЮЩИЕ С МАЛЫМИ МОЛЕКУЛАМИ [c.556]

    Последний из рассматриваемых примеров белок-белковых взаимодействий касается антител или иммуноглобулинов (IgG). Эти белки производятся В-лимфоцитами в тех случаях, когда чужая макромолекула типа белка или углевода попадает в организм. Чужая макромолекула, называемая антигеном, может проникать туда в составе поражающих бактерий или вирусов через кожу (случайно, в результате ранения или намеренно при иммунизации) или через кишечник при пищевой аллергии. Если ковалентно присоединить к белку малую молекулу (гаптен) и затем ввести его в организм, обычно вырабатываются антитела к гаптену. Такое быстрое продуцирование антител подопытными животными является основой различных иммунологических методов, в частности ра-диоиммунодиагностических. [c.564]

    Во многих случаях после связывания с белком малой молекулы происходит конформа-циониое изменение первоначально о азовавшегося комплекса. Такое связывание изображается двухстадийной схемой [c.62]

    Пример 14-3. Обнаружение связывания с белками малых молекул. Связывание субстрата с активным центром фермента оказывает влияние на полярность этого района или на доступность его растворителю и часто вызывает изменение спектров хромофоров, находящихся в активном центре или недалеко от него. Сравнивая наблюдаемые изменения с изменениями, происходящими при пертурбации растворителем, можно получить информацию о структуре активного центра. Например, добавление различных субстратов к лизоциму приводит к сдвигу Ямакс триптофана в область ббльших длин волн. Величина изменения такая, какую можно было ожидать при перемещении одного трип-тофанового остатка из полярного окружения в неполярное. На основании этого можно предположить, что триптофан находится в месте связывания. Кроме того, изучение лизоцима мето- [c.403]

    Следует учитывать, что способность обратимо связывать кислород — уникальное свойство, обнаруженное в природе только у железонорфириновых, железосодержащих и медьсодержащих белков. Однако другие малые молекулы, такие, как СО, СО2 или N , также могут взаимодействовать с этими металлоиро-теинами. Например, СО связывается с гемоглобином даже еще активнее, чем кислород, создавая дефицит кислорода в клетках (отравление угарным газом). [c.360]

    По незамещенным силанолам может происходить неконтролируемая сорбция белков или малых молекул, например ионов при так называемой ион-парной хроматографии (см. ниже), от чего страдают разрешающая способность и воспроизводимость хроматографического процесса. Во избежание этого силикагель после модифика ции обрабатывают еще и низкомолекулярным модификатором гидрофобной природы — триметилхлорсиланом. О том, какой эффект дает такая дополнительная обработка, молено судить по следующему примеру. Для фенилтиогндантоинового производного аргинина (ФТГ-Arg) на колонке Ultrasphere ODS , не обработанной триметилхлорсиланом, при элюции 50%-ным метанолом значение составляет 4,33. После такой обработки задержание ФТГ-Arg на колонке уменьшается настолько, что ему отвечает значение = 1,67. Между тем для ФТГ-Val подобного эффекта не наблюдается. Очевидно, что положительно заряженный остаток аргинина взаимодействует с отрицательным зарядом ионизированной силанольной группы. Из этого примера ясно, что экспериментатору следует знать, был ли имеющийся в его распоряжении сорбент дополнительно об- [c.189]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Из1вестно, что в одном конформационном состоянии фермент лучше связывается с субстратом, чем в другом. Этот простой факт, а также тенденция мономеров белков ассоциировать приводит к ряду интересных эффектов, природа которых долгое время оставалась загадкой для ученых. Сейчас мы знаем, что кооперативные изменения конформации в олигомерных белках лежат в основе многих важных аспектов регуляции активности ферментов и метаболизма. Эти изменения вносят элемент кооперативности в связывание малых молекул (например, кислорода гемоглобином), а также субстратов и регуляторных молекул с ферментами. Вполне возможно, что многие фундаментальные свойства живых организмов непосредственно связаны с кооперативными изменениями в фибриллах, мембранах и других структурах клетки. По этим причинам было бы весьма полезно рассмотреть этот вопрос (в частности, его количественную сторону) более подробно. [c.297]

    Для типичного значения вщ х = 30° в кристаллографии малых молекул с излучением МоКа значение ( ш)тЫ равно 0,7107 А. Быстрое падение интенсивности с ростом брэгговского угла для макромолекул означает, что разрешение для таких структур в общем случае ограничено величинами порядка 2 А. Хотя разрешение до атома, следовательно, невозможно, на карте электронной плотности можно выделить известные молекулярные фрагменты (например, аминокислоты) для выяснения структуры белка. [c.412]

    Молекулы воды образуют водородные связи не только друг с другом, но н с полярными группами растворенных соединений. В го же время любая группа, способная образовывать водородные связи с другой группой, может образовать водородные связи примерно такой же прочности и с молекулами воды. Именно поэтому водородные свяэи далеко не всегда способствуют ассоциации малых молекул в водных растворах. Если в неполярном растворителе какие-либо полярные молекулы прочно связываются друг с другом за счет водородных связей, это отнюдь не означает, что они будут ассоциировать и в воде. Что же в таком случае позволяет биохимикам утверждать, что водородные связи играют огромную роль в формировании структуры макромолекул и при взаимодействии биологически важных соединений Дело в том, что равновесие между состояниями, при которых пары взаимодействующих молекул в воде связаны друг с другом водородными связями или диссоциированы, легко смеш,ается в ту или другую сторону. Так, например, белки и нуклеиновые кислоты могут образовывать компактные структуры за счет внутримолекулярных водородных связей между определенными группами или же денатурировать вследствие образования водородных связей между данными группами и молекулами воды, причем разница в свободных энергиях этих двух состояний сравнительно невелика. [c.247]

    Взаимодействие малых молекул с биологическими макромолекулами и модельными соединениями также интенсивно изучается в термодинамике растворов. В монографической и периодической литературе достаточно подробно представлены такие аспекты данной проблемы, как кислотно-основные равновесия в белках, связывание гемоглобином и миоглобином газообразных лигандов (кислород, монооксид углерода), взаимодействие катионов с белками и нуклеиновыми кислотами. Многие из низкомолекулярных полярных неэлектролитов являются компонентами биологических жидкостей или подобны мономерным единицам биомакромолекул. [c.5]

    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]

    Что касается второй подсистемы - водного окружения, то она состоит из множества малых молекул, склонных, однако, в силу своей природы к образованию сильных водородных связей и электростатическим взаимодействиям. Ни одно свойство жидкой воды не может быть описано на основе предположения о полностью хаотичном движении отдельных молекул. Эксперименты, в частности инфракрасные спектры, вообще не обнаруживают в жидкой воде при комнатной температуре свободных молекул воды. Дж. Бернал еще в 1932 г. в рентгеноструктурном исследовании воды в ее жидкой фазе впервые наблюдал зародышевые формы кристаллов, а годом позже вместе с Р. Флаулером выдвинул гипотезу о существовании в воде трех типов структур, непрерывно переходящих друг в друга [44]. Тщательный статистический анализ данных о многих свойствах воды, предпринятый Г. Немети и Г. Шерагой в 1962 г., привел авторов к заключению о присутствии в воде при нормальных условиях значительных количеств ассоциатов с одной, двумя, тремя и четырьмя межмолекулярными водородными связями [45], Специфика взаимодействия воды с природной аминокислотной последовательностью, обусловливающая возможность последней к структурированию, определяется не абсолютно независимым хаотическим, тепловым движением молекул воды, а движением сложной многофазно структурированной воды, а также сильным поверхностным натяжением (большой избыточной энергией поверхностного слоя) и высокой избирательностью взаимодействий воды в контактном слое с разными по своей природе атомными группами белка. Итак, выбранная модель белкового свертывания, включающая две тесно взаимодействующие между собой подсистемы, не может быть отнесена к классическим термодинамическим макроскопическим системам. [c.94]

    Белки упакованы так же плотно, как хорошие молекулярные кристаллы. Наблюдаемые локальные плотности упаковки в белках варьируют от 0,68 до 0,82. Низкая плотность найдена в активных центрах [63, 64], что подтверждает предположение о подвижности активных центров. Высокую плотность имеют гидрофобные ядра в центре белка. Средняя плотность упаковки белка составляет около 0,75 (плотность упаковки правильных твердых сферических тел составляет 0,74). Для кристаллов малых молекул, связанных вандерваальсовыми силами, характерны значения от 0,70 до 0,78, в среднем 0,74. Стекла, масла или исключительно мягкие вандерваальсовы кристаллы (или некоторые кристаллы, построенные за счет направленных связей, например водородных связей обычного льда. [c.56]

    Существенную помощь в подобных случаях оказывает знание трехмерной структуры белков. Имеющиеся в настоящее время данные показывают, что обычно остатки, находящиеся во внутренней части белка, мало подвержены изменениям и что все различия между гомологичными белками (замены аминокислот, делеции или вставки петель в цепи) касаются поверхности молекул. Таким образом, посследовательности отдаленно родственных белков можно сопоставлять по остаткам, которые занимают геометрически сходные позиции в пространственной структуре. [c.198]

    Гемсодержащие белки являются переносчиками электронов или малых молекул, таких, как О2. В гемоглобинах функция гема и окружающей его полипептидной цепи состоит в обеспечении связывания молекулярного кислорода железом и в защите координированного ферроиона от окисления [639]. В цитохроме с функция атома железа в геме заключается не в координации малой молекулы, а в переносе электронов в ходе метаболизма энергии железо ферментативно восстанавливается (Fe —>- Fe " ) и окисляется соответствующими белками — партнерами цитохрома с [509]. Цитохром 65 — составная часть другой группы электронпереносящих белков, которые участвуют в расщеплении жирных кислот и других химических реакциях [297]. Было выдвинуто предположение [640], что цитохром 5 может взаимодействовать in vivo с цитохромом с. Однако пока установлено, что восстановление цитохрома с цитохромом bs может происходить только in vitro. Недавно была предложена структурная модель этого взаимодействия [640]. [c.249]

    После завершения процесса трансляции на рибосомах белки могут претерпевать дальнейшие модификации. Последние различаются по степени сложности от образования дисульфидных мостиков в результате окисления близко расположенных пар тиольных групп и введения в молекулу белка малых групп, таких как гидроксил,. метил, ацетил, карбоксил и фосфат, до присоединения достаточно больших олигосахаридных звеньев. Многие белки, напротив, синтезируются и хранятся в виде биологически неактивных молекул, из которых в результате ограниченной и контролируемой протеолитической деградации образуются ферменты или полииептидные гормоны, [c.543]

    В качестве последнего примера белков, связывающих малые молекулы, уместно рассмотреть лектины. Эти белки, чаще всего встречающиеся в растениях (но не только в них), связывают производные углеводов со значительной степенью стереоспецифичности. Впервые лектины привлекли внимание исследователей своей способностью агглютинировать эритроциты посредством связывания гликопротеинов мембран. Некоторые лектины специфичны к индивидуальным групповым веществам крови. Интерес к ним увеличился после того, как было обнаружено, что некоторые из лек-тинов агглютинируют преимущественно злокачественные клетки. Посредством иммобилизации на нерастворимом носителе типа агарозы лектины могут быть использованы для очистки гликопротеинов методом афинной хроматографии. Наиболее изученным лек-тином является конкавалин А для этого белка определены аминокислотная последовательность из 238 остатков и трехмерная структура. Конформация конкавалина А весьма примечательна. Семь участков его единственной полипептидной цепи формируют антипараллельную складчатую структуру, а шесть последующих участков образуют другую антипараллельную структуру, перпендикулярную первой. Ион Mn + координирован с двумя молекулами воды и боковыми радикалами Н18-24, 01и-8, Азр-Ш и Азр-14, образуя октаэдр. Ион Са +, расположенный на расстоянии 0,5 нм от Мп +, делит с ним два последних лиганда, а также связан с карбонильным кислородом Туг-12, боковым радикалом Айп-14 и двумя молекулами воды и также образует октаэдрическую конфигурацию. Остатки глюкозы и маннозы связываются в глубоком кармане размером 0,6 X 0,75 X 1,8 нм, образованным, как это ни удивительно, гидрофобными остатками. [c.562]

    Другой пример сильного взаимодействия белка с ДНК—регуляция оперона белком-репрессором. Наиболее изученным примером является 1ас-оперон Е. соИ [25]. Ген-регулятор кодирует синтез белка 1ас-репрессора, который затем связывается с соседним оператором. Связывание с белком-репрессором малой молекулы— индуктора, например изопропилтио-р- )-галактопиранозида, вызывает диссоциацию репрессора с операторного участка. Последующая транскрипция трех соседних генов оперона приводит к биосинтезу трех ферментов — Р-галактозидазы, галактозопермеазы и тиогалактозидтрансацетилазы. 1ас-Репрессор представляет собой тетрамерный белок, состоящий из идентичных субъединиц по 347 аминокислот каждая. Сродство репрессора к последовательности ДНК оператора зависит от ионной силы константа диссоциации в клетке, вероятно, менее 10 " моль/л . Структура участка связывания ДНК в 1ас-репрессоре до сих пор не выяснена, однако удаление трипсином 59 остатков с Л -конца и 20 остатков с С-конца предотвращает связывание. Несколько больше известно об участке связывания индуктора. Измерения флуоресценции показывают, что находящийся в участке связывания индуктора остаток триптофана при связывании перемещается в менее полярное окружение. Изучение изменения флуоресценции методом остановленного потока показывает, что процесс связывания проходит в две стадии. Быстрая начальная стадия подчиняется, как и ожидалось, кинетике второго порядка. Более медленная стадия мономолекулярна и, по- [c.569]

    Однако биологические молекулы не могли бы функциониро вать и жизнь в известных нам формах не существовала бы, если бы помимо сильных взаимодействий внутри биологических молекул и между ними не действовали бы невалентные, нехимические, слабые силы. Клетки п их органоиды — гетерогенные системы, существование и функционирование которых определяются межмолекулярными взаимодействиями невалентного характера. Исполнители почти всех молекулярных функций в клетках — белки — взаимодействуют с липидами и углеводами, с нуклеиновыми кислотами и с малыми молекулами. Взаимодействия эти преимущественно слабые, так как сильные взаимодействия создавали бы слишком жесткие и устойчивые структуры, лишенные молекулярной подвижности, необходимой для выполнения <5пологическими молекулами их разнообразных задач, включающих тонкую регуляцию химических реакции, компартментацию, установление градиентов концентрации. Перечислим виды сла-<5ых взаимодействий в биологических системах и охарактеризуем их. [c.55]


Смотреть страницы где упоминается термин Белки малых молекул: [c.139]    [c.287]    [c.332]    [c.337]    [c.407]    [c.254]    [c.79]    [c.469]    [c.55]    [c.57]    [c.272]    [c.72]    [c.115]    [c.514]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.348 , c.349 , c.387 , c.388 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.348 , c.349 , c.387 , c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулы белка



© 2025 chem21.info Реклама на сайте