Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий с мышьяком

    При определении мышьяка в солях цезия и рубидия мышьяк совместно с другими примесями экстрагируют хлороформом в виде [c.96]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]


    Метод основан на способности репия каталитически ускорять реакцию восстановления теллурата натрня до элементного теллура хлоридом олова (И). Выделяющийся теллур в присутствии защитного коллоида (желатины) окрашивает раствор в черно-коричневый цвет. Определение 0,1—0,001 мкг рения возможно в присутствии более 100 мкг следующих ионов меди, ртути, германия, олова, свинца, сурьмы, висмута, мышьяка, рубидия и осмия. Мешающее влияние молибдена и вольфрама устраняют связыванием их винной кислотой. Метод может быть применен для определения рения в горных породах после выделения его в виде сульфида. [c.376]

    Напишите эмпирические формулы оксидов следующих элементов а) лития б) бериллия в) бора г) кремния д) азота е) мышьяка ж) селена з) рубидия и) стронция к) серебра л) кадмия м) индия н) олова о) сурьмы п) теллура р) цезия с) бария т) золота у) ртути ф) таллия х) свинца. [c.8]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Арсениды рубидия и цезия можно получить при нагревании до 500° С в течение 24 часов смеси рубидия или цезия с мышьяком при четырех-пятикратном избытке металла по сравнению со сте-хиометрическим соотношением компонентов реакции [216]. Примесь металла удаляют обработкой продукта реакции жидким аммиаком, который затем удаляют током нагретого азота. Для окончательной очистки от аммиака арсениды высушивают в глубоком вакууме при 160° С. [c.110]


    Натрий Хлор Магний Сера. . Кальций Калий. Бром Стронций Бор. . Фтор Кремний Рубидий, Литий. , Азот. . , Йод. . , Фосфор Цинк, , Барий. . Железо Медь. . Мышьяк Алюминий [c.72]

    Олово, рубидий, вольфрам, литий, бор, иттрий, кобальт, свинец, бром, молибден, торий, цезий Скандий, мышьяк, кадмий, бериллий, аргон, гафний, уран, галлий, германий, иод [c.321]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    По схеме радиохимического определения микроэлементов проанализировали несколько образцов нефти. Химический выход элементов и чистоту их разделения определяли методом радиоактивных индикаторов. Химические выходы элементов составили (%) для молибдена — 60, цинка — 85, хрома — 97, сурьмы — 98, мышьяка, бария и рубидия — 99, золота, лантана, железа, кобальта и ртути — 100 (см. схему па с. 117). [c.116]

    Название элемента Ое, германий As, мышьяк 5е, селен Вг, бром Кг, криптон Rb, рубидий Sr, стронций [c.630]

    Катионами могут быть сильно электроположительные металлы, такие как литий, натрий, калий, рубидий, цезий, кальций, магний и т. д. Анионами могут быть комплексы бора, кремния, мышьяка, алюминия, титана, ртути, ванадия, марганца, молибдена, хрома, кобальта, железа, цинка, платины, никеля, лантана и т. д. Отрицательными группами в комплексе могут служить фтор, хлор, бром, иод, кислород, гидроксильная группа нейтральными —алкильная, арильная, карбонильная, гидроксильная группы. Типичные комплексные анионы приведены в следуюш,ем перечне  [c.252]

    Кроме перечисленных выше элементов, в зерне злаков содержится марганец, медь, цинк, бор, алюминий, йод, кобальт, никель, молибден, фтор, селен, бром, титан, олово, мышьяк, литий, ванадий, барий, стронций, цезий, рубидий и многие другие элементы. Многие из этих элементов играют определенную роль как микроэлементы в жизни растений и животных. [c.364]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Гетерополисоединения рубидия и цезия относятся к очень сложным координационным соединениям. Их комплексные анионы содержат в качестве комплексообразователей кремний, фосфор, бор, германий, ванадий, мышьяк, теллур или некоторые другие элементы, а лиганды этих сложных соединений — окислы молибдена или вольфрама [35]. [c.52]

    Титан, марганец, фосфор, (стронций), (фтор) Барий, рубидий, хром, медь, никель, литий, цинк, (мышьяк), (бром) 6.10-1—5-10-2 1-10  [c.48]

    Дигидроарсенат рубидия получают либо сплавлением нитрата рубидия с трехокисью мышьяка, взятых в эквимолекулярном соотношении, либо путем нейтрализации водного раствора карбоната рубидия мышьяковой кислотой в присутствии индикатора метилоранжа [1, 4]. Сведений по синтезу дигидроарсената цезия в литературе не имеется. [c.67]

    Нами разработана методика получения днгидроарсенатов рубидия и цезия ос. ч. из металлического мышьяка высокой ЧИСТ0Т1.1 и карбонатов рубидия и цезия ос, ч. [c.68]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Объем ежегодного производства серной кислоты очень велик, и большая ее часть получается путем окисления сернистого газа в серный ангидрид на платиновых катализаторах или на пятиокиси ванадия [121]. Активными катализаторами являются также и другие переходные металлы — вольфрам, палладий, золото и хром, однако они не так активны и стойки, как платина. Другие катализаторы подразделяются [140] на низкотемпературные, подобно платине (особенно ванадаты натрия, калия, бария, серебра, рубидия, цезия, меди и олова), и высокотемпературные катализаторы, подобные пятиокиси ванадия (в особенности окиси вольфрама, титана, железа, олова, хрома и мышьяка). Однако в промышленности широко используются либо только платина и чистая пятиокись ванадия, либо пятиокись ванадия, промотированная сульфатами или пиросульфатами щелочных металлов. Применение платинированного асбеста в качестве катализатора было предложено еще в 1831 г., когда Филлипсу был выдан патент на этот процесс. Этот метод длительное время считался экономически не выгодным, так как ныль — неокислившаяся сера и следы ртути, мышьяка и фосфора (выделявшиеся из пиритов, использовавшихся в качестве серусодержащего сырья) — быстро отравляла платиновый катализатор. Исследования Винклера во Фрейбурге и Кпейтша и других химиков Баденской анилиновой и содовой фабрики показали, что сернистый газ и воздух можно очистить в достаточной степени впрыскиванием водяного пара и тщательной промывкой на фильтрах, пропитанных серной кислотой. [c.325]

    Фиолетовая — калий сине- зеленая — бор желто-зеленая — < )иолетовая — рубидий фиолето- барий, молибден желтая — во-синяя — цезий бледно-синяя — натрий кирпично-красная — каль--свинец, мышьяк, сурьма, селен ций кармйно-красная (малинозеленая или голубая—медь изум- вая) —стронций, литий. -рудно-зеленая — таллий, теллур  [c.75]

    Анализу методом изотопного разбавления с использованием масс-спектрометра [307] подвергаются любые элементы, обладающие двумя стабильными или долгоживущими изотопами [1009], т. е. большинство элементов, рассматриваемых в органической химии, за исключением фтора, фосфора, натрия и мышьяка иод, который обладает одним стабильным изотопом, может быть проанализирован при помощи изотопного индикатора Такой индикатор известен под названием совершенного , так как использование его позволяет работать с изолированными пиками. Метод широко применялся для определения европия, самария, гадолиния [840], никеля, цинка, селена, криптона [1687] и ксенона [841], кальция и аргона [1004, 2133], рубидия [1870] истрон-ция [434, 1039, 2037], осмия [906], серебра[883], висмута [205], свинца [332, 1572, 1734], урана [2027] и тория [2028.  [c.111]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Ксенон. . Кюрий. . Лантан. . Литий. . Лютеций. Магний. . Марганец. Медь. . . Менделевий i oлибдeн. Мышьяк, Натрий. . Неодим.. Неон. . . Нептуний. Никель. . Ниобий. . Олсво. . Осмий. . Палладий. Платина. Плутоний. Полоний. Празеодим Прометий. Протактиний Радий. . Радон. Рений. Родий. Ртуть. Рубидий [c.597]

    Замещая калий на рубидий, аммоиий, цезий, мышьяк, а водород па дейтерий, можно получить ряд изоморфных кристаллов, вследствие чего удается менять температуры перехода и числовые значения коэффициентов пьезоэлектрических и других эффектов. Кристаллы типа КДП особенно ценны не только пьезоэлектрическими, но своими нелинейными оптическилш свойствами (см. 45, явление волнового синхронизма). [c.268]

    Бунзен (Bunsen) Роберт Вильгельм (1811—1899) — немецкий химик, ин. ч.-к. Петерб. АН. Первым получил органические соединения, содержащие мышьяк. Совместно с Г. Р. Кирхгофом положил начало спектральному анализу, открыл цезий, рубидий. Автор трудов по электролизу хлоридов металлов, газовому анализу 100, 149, 159, 161, 199—202, 203 и сл. [c.272]


Смотреть страницы где упоминается термин Рубидий с мышьяком: [c.125]    [c.318]    [c.75]    [c.107]    [c.207]    [c.6]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте