Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чистые газы при высоких давлениях

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]


    С помош,ью уравнения (1.2) не всегда удается с достаточной точностью описать поведение реальных газов. В реальных газах существует межмолекулярное взаимодействие и сами молекулы занимают некоторый собственный объем. При высоких давлениях все газы следует рассматривать как реальные. Реальность газа следует учитывать также при низких и средних давлениях для многоатомных газов при температурах, близких к критическим. Сложный характер межмолекулярного взаимодействия не позволяет получить уравнение состояния конкретного реального газа чисто теоретическими методами. Более целесообразным является получение уравнения состояния в виде интерполяционной фс рмулы, описывающей экспериментальные данные. Существует много эмпирических или полуэмпирических уравнений состояния реального газа. Одно из них, называемое уравнением Майера—Боголюбова, можно представить в следующем наиболее общем виде  [c.13]

    Энтальпия идеального газа зависит только от температуры, реального — от температуры и давления. Существуют графические и аналитические методы определения энтальпии. Графический метод определения энтальпий углеводородов Сх—Со, основанный на принципе соответственных состояний, приводится в литературе [25], Энтальпии чистых компонентов при заданных условиях можно находить по диаграммам состояния этих веществ [25], Энтальпию можно определять графическим методом по графикам Максвелла (рис, 11,18 и 11,19) [2], На этих графиках представлена энтальпия индивидуальных углеводородов 1—08 в зависимости от температуры и давления. При определении по этим графикам энтальпии жидких смесей используется правило аддитивности, для паров правило аддитивности можно использовать до давления 0,1 МПа, При более высоких давлениях энтальпию паровой смеси рассчитывают путем интерполяции по средней молекулярной массе паров, В этом случае определяют среднюю молекулярную массу смеси. Затем по графикам, изображенным на рис, П,18 и 11.19, определяют значения энтальпий двух ближайших индивидуальных компонентов, между которыми находится значение средней молекулярной массы смеси. Энтальпию смеси определяют путем интерполяции между значениями энтальпий индивидуальных углеводородов по молекулярным массам этих индивидуальных углеводородов и средней молекулярной массе смеси. Если компонент смеси находится при температуре, превышающей его критическую температуру, энтальпию определяют по линии газ в растворе (см, рис, 11,18, 11,19), [c.87]


    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    Закономерности, изложенные в предыдущем параграфе, относятся к дав-.лению насыщенного пара, находящегося в равновесии с чистой жидкостью (твердым телом) в отсутствие посторонних газов. Введение в систему постороннего газа изменяет давление насыщенного пара при неизменной температуре. Это изменение происходит даже в том случае, когда посторонний газ не растворяется в конденсированной фазе. Оно проявляется при высоких давлениях, при которых закон Дальтона неприменим к газовым смесям. [c.151]

    Сточную воду хлорируют газообразным хлором, так как жидкий хлор плохо растворяется в воде. При этом дозирование и введение хлора в обрабатываемую воду, регулирование подачи хлора из баллонов или бочек газа высокого давления, измерение расхода газа при контролируемом давлении, растворение газа в рабочей (чистой) воде для получения хлорной воды заданной концентрации (обычно 0,1—0,2% или [c.410]

    Сравнение глубинных замеров до и после обработки показало, что нет явных интервалов, работающих чистым газом. Вероятнее всего, он поступает вместе с жидкостью и, благодаря действию шашек, вспенивает ее. Пена достигает башмака НКТ и уносится газом высокого давления. На устье это отмечается увеличением выноса жидкости. [c.42]

    На определенном уровне температура газа становится равной температуре замерзания содержащейся в нем влаги. На этом и вышележащих уровнях вода начинает конденсироваться в виде льда. Отложения льда достигают наибольшей толщины, разумеется, на том уровне, где температура газа равна температуре вымерзания влаги, так как равновесное количество водяных паров в водороде быстро уменьшается при понижении температуры. Из верхней части очистителя (при температуре около —110° С) водород поступает в теплообменник Ви где подвергается дальнейшему охлаждению, и наконец проходит через силикагелевый адсорбер, где удаляются азот и, вероятно, другие летучие примеси. Возвращающийся чистый водород высокого давления проходит через теплообменник охлаждая водород, идущий на очистку, и поступает в трубки малого диаметра теплообменника Ль обеспечивая конденсацию влаги и масла на наружной поверхности трубок. Холодные пары азота из адсорбера проходят по третьей секции теплообменника Ви а затем по трубкам, навитым снаружи очистителя. Следует сказать, что вместо пропускания газа через теплообменник й и адсорбер такой очиститель в верхней части может быть снабжен холодильной машиной для охлаждения водорода. [c.109]

    Кожухо- трубчатые ТН 0,6 1,0 1,6 2,5 4,0 0,6 1,0 1,6 2,5 4,0 От —30 до +350 Жидкость, газ, пар, загрязненные. Коррозионные, высокого давления и температуры, меньшего расхода Газы при низких давлениях, чистые [c.146]

    Необходимо подчеркнуть, что уравнение (5.2), строго справедливое в теории диффузии газов, для нейтронов не строго корректно. В газах существует давление, обусловленное молекулярными столкновениями, более высокое в областях с большей плотностью. Это давление обусловливает д в и-жущую силу в сторону областей с низкой плотностью. В случае с нейтронами их столкновения между собой фактически отсутствуют перемещение из областей с повышенной плотностью в области с пониженной плотностью есть лишь чисто статистический эффект (ко-торый проявляется и в газе), обус-ловленный тем, что из области с повышенной плотностью в область с более низкой плотностью - [c.117]

    Содержание газообразного вещества, участвующего в электродной реакции, принято выражать в единицах давления чистого газа или его парциального давления в газовой смеси (в единицах летучести и парциальной летучести при высоких давлениях). Потенциал водородного электрода описывается уравнением [c.279]

    Крупномасштабные промышленные испытания в Великобритании и некоторых других странах Европы показали, что сжигание жидких СНГ практически осуществимо. Оборудование, разработанное для сжигания жидкого бутана низкого давления, более эффективно, чем аналогичное оборудование для сжигания жидкого пропана высокого давления. Основное преимущество сжигания СНГ в жидком виде по сравнению со сжиганием газа заключается в более низкой стоимости всей установки, поскольку из нее исключаются испарители, газосмесительная установка, теплотрасса-спутник и тепловая изоляция, необходимые для предотвращения конденсации чистого газа (бутана), исключаются потери топлива [c.158]


    Сепарация олефиновых продуктов после закалки потока, выходящего из пиролизной установки, осуществляется по схеме, описанной в разделе Фракционное разделение газов . Тяжелые олефины сепарируются из легких газов (водорода, метана, этана, этилена) при фракционной дистилляции под давлением. Чтобы изолировать фракцию Сг и затем сепарировать чистый этилен (табл. 52), необходимо осуществлять глубокое охлаждение при высоком давлении. [c.238]

    Схема водной промывки циркуляционного газа показана на рис. 8.11. Чистый водный конденсат, пройдя закрытую градирню (2), насосом высокого давления подается на орошение промывателей (10), работающих под давлением. Циркуляционный газ из коллектора поступает в промыватели снизу и возвращается в цикл очищенного газа. Отработанная вода, содержащая наряду с аммиаком, некоторое количество углеводородных газов и торе происходит расслаивание, газов. [c.155]

    Если требуется чистая окись углерода, ее можно выделить из водяного газа или из других содержащих ее газов обычными методами, в первую очередь сжижением с последующей ректификацией или селективной абсорбцией под высоким давлением растворами солей одновалентной меди, например аммиачным раствором формиата и карбоната меди [1]. Реакции получения смесей окиси углерода и водорода различного состава используют в промышленности для осуществления ряда важнейших процессов (синтез аммиака, производство синтетического метанола, гидрогенизация угля). [c.46]

    Этот автоклав изготовляют из цельнотянутой стальной трубы, днище которой заваривают, а верхний рант обтачивают в виде кольцевого ножа. Такой же кольцевой нож имеется и у верхней части прибора ( головы ). При сборке голову сближают с корпусом, помещают между ножами диск с отверстием или широкое кольцо из чистой меди—обтюратор 5—и в тисках гаечным ключом закручивают болты, продетые в отверстия фланцев I и 2 (рис. 54). Кольцевые ноли врезаются в обтюратор, чем создается полная герметичность при высоких давлениях. В голове бомбы высверлены каналы для соединения с манометром, баллоном со сжатым газом и для запорного вентиля 4. После заполнения бомбы водородом (при помощи гибкого медного капилляра) до нужного давления, показываемого манометром, поворотом вентиля 4 перекрывают выходной канал. [c.347]

    На практике обычно приходится работать не с чистыми газами, а с их смесями. Поскольку при низких давлениях и высоких температурах газовые смеси подчиняются закону Дальтона, действие закона Генри распространяют и на смеси газов  [c.228]

    Расчет равновесного давления азота при реакции его с железом. При изучении гетерогенных равновесий, в которых наряду с газообразными компонентами участвуют чистые кристаллические вещества, часто в константу равновесия процесса не записывают активности кристаллических веществ. Такое положение можно считать допустимым лишь для систем при низких давлениях, когда активность твердых веществ близка к единице (ат = = 1 в стандартном состоянии при р = 0,1013 МПа и данной температуре). Естественно, что при высоких давлениях необходимо учитывать рост активности твердых тел по уравнению (51), а также адсорбцию и растворение газов в твердых фазах, снижающие активность последних. [c.119]

    Может показаться, что изучение бесконечно разбавленных растворов представляет чисто теоретический интерес. Однако это не так. Свойства, принципиально присущие только им, в большой мере сохраняются и при конечных (достаточно низких) концентрациях. Так, водные растворы газов На, N2, СО, О2, СН4 и др. ведут себя как бесконечно разбавленные даже при очень высоких давлениях их растворимость ничтожно мала (Л 2 О.О42—0,0з7). [c.246]

    На чисто газовых месторождениях, если пластовый флюид состоит, главным образом, из метана, производство товарного продукта — природного газа — сводится к подготовке его к дальнему транспорту и осуществляется на традиционных УКПГ. Но на газоконденсатных месторождениях в соответствии с новой концепцией должно производиться минимум три товарных продукта газ высокого давления, сжиженный газ (смесь пропана и бутана) и стабильный конденсат. И одно это обусловливает перерождение установок подготовки газа в промысловые заводы, а подготовка газа к дальнему транспорту становится одной из задач промысловой переработки продукции скважин. На месторождениях с более сложным составом пластового флюида промысловый завод является необходимостью, поскольку на УКПГ в этих условиях невозможно получить даже один, традиционный товарный продукт — природный газ. УКПГ можно рассматривать как частный случай промыслового завода. [c.16]

    Более целесообразный путь проведения дискретной газовой экстракции — неполная замена равновесного газа на чистый газ. Эта операция легко и с высокой точностью реализуется путем отбора из сосуда части газа, находяш,егося под повышенным давлением, и может сочетаться с пневматическим дозированием газа из сосуда с пробой в хроматограф [80]. [c.239]

    Уравнение (1-29) применимо при растворении чистого газа. Растворимость компонента газовой смеси при высоких давлениях обычно ниже, чем растворимость чистого компонента при давлении, равном парциальному давлению этого компонента. [c.35]

    Эти соображения не имеют практического значения при низких температурах, при которых и сами давления паров воды малы, и тем более малы их изменения, вызванные добавлением электролита. В методах определения коэффициентов абсорбции при низких температурах и давлениях растворимость относят к одному и тому же парциальному давлению растворяемого газа, и, следовательно, к одному и тому же химическому потенциалу газа. Различие давлений над чистой водой и раствором соли, равное изменению давления паров воды в результате добавления электролита, при низких температурах очень мало. Эффект следует принимать во внимание при температурах не ниже 250° С. Для устранения этого эффекта при высоких температурах и давлениях предложена приближенная поправка [20], на которую нужно умножить величину в уравнении (IX. 11), чтобы устранить возникающее [c.155]

    Для увеличения степени извлечения этана могут быть использованы следующие пути повышение давления абсорбции до 60, а иногда и до 100 ат, понижение температуры абсорбции до умеренных температур порядка 10—30° С установка дополнительного абсорбера для улавливания этана и пропана из газов высокого давления, выделяющихся при снижении давления насыщенного абсорбента. Однако для выпуска концентрированного этана требуются значительные затраты, вследствие чего метод абсорбции становится малоподходящим. Более приемлемым в данном случае является применение комбинированной абсорбционноконденсационной низкотемпературной схемы или чисто конденсационной, при которой удается уловить до 70—85% этана. [c.41]

    Цикл Гэмпсона ) для ожижения воздуха схематически изображен на фиг. 1.2. Чистый сухой воздух давлением от 140 до 210 атм поступает в секцию высокого давления противоточного теплообменника и, пройдя по теплообменнику, расширяется в расширительном (дроссельном) вентиле до давления, равного приблизительно атмосферному. За счет эффекта Джоуля — Томсона при расширении (дросселировании) температура газа понижается. Холодный расширенньш газ поступает в секцию низкого давления теплообменника и охлаждает поток газа высокого давления. Вследствие этого температура газа после дроссельного вентиля непрерывно снижается, пока не наступает конденсация газа. Назовем отношение количества ожиженного воздуха к общему количеству сжатого коэффициентом ожижения х. [c.18]

    Если при исследованиях используют реальные газы с высокой плотностью, например фреоны, то при ограниченной мощности приводного двигателя приходится создавать давление на всасывании ниже атмосферного. В этом случае все режимы надо пройти за одно испытание. Предварительную обработку результатоп необходимо при этом вести в темпе проведения опытов, т. е. определять значения АТ, т] и я сразу же для каждой экспериментальной точки. Сопоставляя результаты расчетов, всегда можно определить момент, когда подсасывание атмосферного воздуха начинает влиять на результаты исследований. То]-д ) испытания прерывают, контур вакуумируют и заправл5пот заново. После остановки, даже не очень длительной (16—20 ч), контур также следует снова заправлять чистым газом, так 1(лк в него почти всегда проникает воздух. С учетом этой специфики надо стремиться к тому, чтобы объем контура был по возможности наименьшим. Если ограничений по мощности нет, то начальное давление в контуре выбирают таким, чтобы при самой низкой температуре охлаждающей воды не происходило конденсации газа в газовом теплообменнике. Это требование важно при определении мощности ступени по измерениям температур, когда наличие жидкой фазы в потоке на входе в ступень приводит к резкому увеличению погрешности в измерении температуры. [c.133]

    Увеличение давления приводит к значительному возрастанию коэффициента проницаемости ЗОг в полимере [125, 131, 134]. Это происходит, вероятно, благодаря пластифицирующему эффекту, вызванному растворением ЗОг в полимере. При этом увеличиваются значения фактора разделения зоа/Ыг.ог- Как правило, совместная проницаемость ком понентов газовой смеси не подчиняется правилу аддитивности. Так, проницаемость азота растет в пр исутствии диоксида серы, особенно при высоких концентрациях последнего, причем присутствие N2 ингибирует проницаемость ЗОг [135]. Возможность взаимодействия ЗОг и N2 затрудняет предсказание скоростей проницаемости этих газов в смесях из данных для чистых газов. Исследования по разделению 502-содержащих газовых смесей показали возможность извлечения диоксида серы из топочных газов с помощью мембран ПВТМС и РЭТСАР [124, 136]. Определены оптимальные условия проведения процесса для 70%-го извлечения ЗОг из газов, при этом газовая смесь, содержащая 1,5% (об.) диоксида серы обогащалась до 6% (об.) (при перепаде давлений на мембране 0,1 МПа), что вполне д0стат0Ч Н0 для автотермической переработки в серную кислоту. [c.332]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Так, для получения полиэтилена высокого давления чистота выделенного из газов этилена должна достигать 99,9%. Чтобы получить такую чистую фракцию, требуется сложная схема газоразделения с глубоким охлаждением 1[огоиов. Некоторые же процессы полимеризации, например получение полимербензина, основаны иа использовании широкой фракции, содержащей углеводороды [c.305]

    Во второй части термодинамического анализа при описании газовых смесей удается значительно ближе подойти к предсказанию свойств смесей по изиестпым свойствам чистых компонентов. Для низких давлений задача была решена давно с помощью законов идеальных газов. Различные уравнение состояния и в области более высоких давлений дают возможность более или менее удовлетворительно рассчитывать свойства смесей по свойствам чистых компонентов, хотя в отношении удобства и точности предложенные методы оставляют желать лучшего. Представляется желательным дальнейшее совершенствование мсггодов, в особенности для критической области. [c.86]

    Таким образом, для расчета Кх при заданном высоком давлении надо знать Кг и Ку. Поскольку при низких давлениях — Р, то, определив экспериментально или вычислив Кр в условиях, когда газ является идеальным, мы одновременно устанавливаем и значение /(/, которая при любом давлении остается постоянной. Величина Ку, несмотря на принятое обозначение, не является константой равновесия. Это просто соотношение между коэффициенхами фугитивности чистых компонентов при давлении смеси. [c.376]

    Чистые (однокомпонентные) газы с целью сжиженпя охлаждают ниже критической температуры. При критической температуре газ можно сжижать при критическом (или более высоком) давлении. Ниже критической температуры газ сжижается при давлении ниже [c.50]

    Вйриальное ур-ние состояния позволяет с достаточной точностью рассчитать разл. термодинамич. св-ва чистых газов и газовых р-ров до умеренно высоких давлений. [c.99]

    Типичными представителями неводных компонентов, образующих системы рассматриваемого типа, являются углеводородные жидкости. В соответствии с рис. 10 в системах наблюдаются равновесия неводнан жидкость—газовая фаза, водная жидкость—газовая фаза, трехфазные равновесия жидкость-жидкость-газ и равновесия жидкость-жидкость. Критическая кривая имеет две ветви одна начинается в критической точке воды и, проходя через минимум температуры на диаграмме давление-температура, направляется к высоким давлениям и температурам другая ветвь начинается в критической точке чистого неводного компонента и оканчивается в конечной критической точке, в которой эта ветвь критической кривой встречается с трехфазной кривой. [c.18]

    СТИ ОТ давления логарифма отношения летучести растворенного газа на кривой сосуществования фаз (1д f"/N ) В этих построениях летучесть газа на линии сосуществования рассчитывалась по данным о летучести чистого газа и молярной доле воды по уравнению ( /11.4), поскольку при не очень высоких температурах и высоких давлениях содержание водяного пара в газовой фазе невелико. При соблюдении закона Генри в термодинамической формулировке указанная зависимость обычно представляет собой прямую линию, наклон которой пропорционален парциальному молярному объему растворенного в воде газа, а значение lgf /N. ) при давлении пара воды (р ) равно логарифму коэффициента Генри (см. гл. VI). Описанное построение позволяет приближенно найти коэффициент Г енри растворенного в воде газа. Полученные таким образом коэффициенты Генри наряду с коэффициентами Генри, рассчитанными по результатам исследований первой группы, включены в табл. 30. [c.47]

    В ходе метрологич. исследований используют аттестованные газовые смеси и образцовые ср-ва измерения. Выбор метода аттестации зависит от концентрации и св-в определяемого и сопутствующих компонентов. Аттестацию газовых смесей выполняют, напр., по методикам, предусматривающим измерение расхода, давления и объема смешиваемых чистых газов, определение отношения масс компонентов смеси (с помощью аналнт. газовых весов), установления нх точек замерзания и т.д. Используют также предварительно аттестованные с большей точностью методики хнм. анализа. В тех случаях, когда аттестовать смеси с высокой точностью по результатам косвенных измерений нх св-в практически невозможно, применяют стандартные образцы газовых смесей. Прн этом для аттестации синтези-ров. газовых смесей в кач-ве стандартных образцов на высшем уровне точности пользуются результатами экспериментов, проведенных в неск. лабораториях. [c.471]

    Исходные реагенты должны быть очень чистыми, ибо даже следы примесей и загрязнений могут обрывать цепь, уменьшать выход продуктов и увеличивать время реакции. Для снижения отрицательного действия кислорода рекомендуется проводить реакцию в атмосфере инертного газа (азот). Если температура кипения исходных реа> генток достаточно высока, то реакцию можно вести при атмос( 1ерном давлении в стеклянных реакторах. Для иизкокипящих реагентов требуется аппаратура высокого давления (автоклав, футерованный стеклом). [c.255]

    Продукт с низа колонны высокого давления ностунает в колонну низкого давления 8 (0,2 МПа). В этой колонне выделяется чистый газообразный азот и жидкая смесь азота и метана. Продукт с низа колонны сжимается до 0,9 МПа и после исиарения выводится с установки в качестве топливного газа. Для орошения колоппы обогащения азота пспользуется система открытой циркуляции товарного газа 4. [c.207]

    Очистка 0 , хранящегося в стальных баллонах. Продажный Oj, в стальных баллонах может содержать следующие примеси водяные пары, СО, Ог, Nj, реже следы H2S и SO . В большинстве случаев степень чистоты продажного Oj достаточна для проведения химических реакций. Только при более высоких требованиях (например, при физических исследованиях) продажный СО2 надо подвергать дополнительной очистке. Для этого газ пропускают через насыщенный раствор USO4, затем через раствор КНСОз и, наконец, через установку для фракционирования [2], которая является частью промышленной установки для получения чистого HjS (см. т. 2, рис. 174). Для фракционирования Oj используют четыре вертикально расположенные промывалки, восемь U-образных трубок для глубокого охлаждения и две ловушки-вымораживателя. Перед последним вымораживателем имеется еще ответвление к ртутному манометру. Oj проходит первые четыре U-образные трубки для глубокого охлаждения (выдерживаемые при указанной температуре) и вымораживается в 8. Когда 8 наполняется, открывают кран 9, отпаивают в точке 10 и создают в этой части аппаратуры высокий вакуум. После этого охлаждают остальные четыре U-образные трубки до —78 °С (сухой лед-f--t-ацетон), снимают охлаждение жидким воздухом с 8, откачивают первый погон газа, а затем уже погружают в сосуд для конденсации 11 в жидкий воздух. Средняя фракция собирается в 11, а остаток — в 8. Фракцию из 11 еще дважды сублимируют и контролируют чистоту газа, определяя давление упругости пара при различных температурах. Газ хранят в 25-литровых стеклянных колбах, которые обезгаживают путем многочасового нагревания в высоком вакууме при 350 °С. [c.682]


Смотреть страницы где упоминается термин Чистые газы при высоких давлениях: [c.84]    [c.203]    [c.166]    [c.332]    [c.255]    [c.130]    [c.383]    [c.241]    [c.99]    [c.376]    [c.61]   
Смотреть главы в:

Свойства газов и жидкостей -> Чистые газы при высоких давлениях




ПОИСК







© 2025 chem21.info Реклама на сайте