Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протекторы и катодная защита

    Обработка коррозионной среды осуществляется удалением из нее кислорода или введением в нее специальных добавок (ингибиторов), замедляющих процесс коррозии. Электрозащита осуществляется при помощи внешнего источника постоянного тока и может быть катодной и анодной или при помощи протектора (катодная защита). [c.314]

    В табл. 60 приведены показатели эффективности различных типов установок электрохимической катодной защиты газопровода, а в табл. 61 — характеристика работы протекторов промышленного типа при защите газопровода в грунте. [c.394]


    Наиболее эффективным средством защиты металлических конструкций от коррозии блуждающими переменными токами является метод поляризованных (присоединенных к защищаемому сооружению через полупроводниковые диоды) протекторов и дренажей он дает возможность снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них катодный полупериод, который обеспечивает их катодную защиту. [c.397]

    При установке протектора на днище резервуара возникает защитный электрический ток по цепи протектор —. дренажная вода — защищаемая поверхность днища и нижние пояса резервуара. В начальный момент после установки протектора наблюдается установление максимального тока протектора с плотностью 0,02—0,05 А/м . По мере образования на защищенном днище резервуара катодного осадка наблюдается снижение тока протектора до плотности 0,005—0,002 А/м и увеличение разности потенциалов днище — электролит. Катодный осадок образуется на поверхности днища в течение 0,5—3 мес. работы протектора. Зона защиты протектора увеличивается с увеличением толщины слоя подтоварной воды, удельного поляризационного сопротивления, разности потенциалов протектор — днище и с уменьшением удельного сопротивления электролита. [c.155]

    В результате исследований возможности комплексной защиты [3] применения автоматической катодной защиты прерывного действия совместно с протекторами (рис. VI.8) получены зависимости изменения потенциалов и величины суммарного тока, протекающего между защищаемым сооружением и анодом во включенном состоянии цепи тока поляризации прерывного действия и отключенном состоянии (рис. 1.9). [c.203]

    ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда [c.218]


    Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу. [c.315]

    В целом по стране к началу 1976 г. для активной электрохимической защиты подземных трубопроводов, транспортирующих газ, нефть и нефтепродукты, эксплуатировалось 12 107 станций катодной защиты, 890 станций электродренажной защиты и 295 ООО протекторов. [c.5]

    Применение электрохимического метода защиты с использованием внешнего источника тока (катодная защита) для резервуаров с нефтью и нефтепродуктами опасно в пожарном отношении. При использовании протекторных установок исключается возможность образования искры при разрыве электрической цепи, так как разность потенциалов между протектором и защищаемой конструкцией никогда не превышает допускаемой величины. [c.163]

    При определении числа протекторов для катодной защиты днища резервуара заданной площадки необходимо исходить из условия наличия катодного осадка. [c.228]

    При электрохимической защите арматуры железобетонных резервуаров могут быть применены как протекторы, так и сетевые катодные станции. Использование протекторов для защиты арматуры от коррозии наиболее желательно, так как создаются условия более равномерного распределения защитных токов по арматуре резервуара и не требуют противопожарных мер. [c.243]

    При прокладке магистральных трубопроводов в труднодоступных районах часто отсутствуют линии электропередачи, так как сооружение для питания установок катодной защиты связано с большими затратами. В этом случае применяют протекторную защиту (рис. 7.1). Принцип действия ее заключается в том, что разрушению подвергается специально установленный анод (протектор), имеющий более электроотрицательный потенциал, чем защищаемое стальное сооружение. [c.157]

    И протекторы, и катодная защита применимы в средах, хорошо проводящих электрический ток, например в морской воде. В частности, протекторы широко применяются для защиты подводных частей морских судов. [c.692]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]


    Катодный метод используют в борьбе с коррозией подземных сооружений. Он имеет существенное преимущество перед протекторной защитой. Так, радиус действия последней приблизительно равен 50 м. Поэтому при необходимости защищать большие поверхности металла требуется целая серия протекторов. Радиус же действия катодной защиты составляет около 2000 м. [c.371]

    Для предотвращения коррозии металлических конструкций, находящихся в почве, таких как металлические трубопроводы, резервуары, сваи, опоры, применяется электрохимическая катодная защита. Ее осуществляют путем подсоединения металлической конструкции к отрицательному полюсу внешнего источника постоянного тока, положительный полюс присоединяют к заземленному металлическому электроду, который постепенно разрушается. При этом на поверхности защищаемого металла протекают восстановительные процессы, а окисляется материал анода. Другой метод электрохимической защиты основан на присоединении защищаемого металла к электроду, изготовленному из более активного металла. При защите стальных конструкций применяют цинковые пластины. В этой гальванической паре цинк будет разрушаться и защищать сталь от коррозии. Отсюда и название этого метода —метод протектора (от лат. рго ес/ог —покровитель). Например, для защиты от коррозии к корпусам морских кораблей прикрепляют цинковые пластины. [c.149]

    При проектировании на складе нефти и нефтепродуктов станций катодной защиты заземление технологического оборудования следует предусматривать протекторами. [c.130]

    Для уменьшения растворения металла протекторов катодная защита трубопровода при наличии ветра осуществляется от ветроэлектрогенераторов, и только на время перерыва в работе ветроэлектрогенератора и аккумуляторной батареи действз ют протекторные установки. [c.104]

    В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы). [c.394]

    Для борьбы с электрохимической коррозией мeтaллQв применяют также и специфические электрохимические методы, основанные на том, что защищаемый металл подвергается катодной поляризации. Так, в методах, называемых протекторной защитой., это достигается присоединением к защищаемому, металлу более активного металла протектора), который становится анодом, благодаря чему анодные участки поверхности защищаемого металла полностью или частично превращаются в катодные по отношению к протектору. В других методах, называемых катодной защитой, аналогичный результат достигается присоединением защищаемого металла к отрицательному полюсу внешнего источника постоянного тока. Защитное действие осуществляется благодаря повышению концентрации электронов в поверхностном слое металла, что затрудняет растворение его. [c.460]

    Протекторная защита по принципу действия является вариантом катодной защиты. Отличие состоит в том, что в электрической цепи используется протектор, т. е. анодный заземлитель, обладающий в коррозионной среде более отрицательным электрохимическим потенциалом, чем металл защищаемого оЗъекта (рис. 23.4). Протектор 5, соединенный изолированными кабелями 2 с защищаемой конструкцией 1, создает корот- [c.284]

    Коррозионностойкие стали и другие пассивные сплавы (например, медноникелевые) можно защитить от точечной коррозии катодной поляризацией их от внешнего источника постоянного тока или с помощью цинковых, алюминиевых или железных протекторов. Катодная поляризация должна обеспечить такой потенциал поверхности защищаемого металла или сплава, величина которого будет ниже потенциала питтингообразо-вания. [c.444]

    На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек- [c.219]

    В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [22 ], который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия. [c.224]

    Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода. [c.227]

    В книге излагаются основные сведения о коррозии трубопроводов и резервуаров, освещаются методы защиты от коррозии изоляционными покрытиями, протекторами, катодными станциями и электродре-нажными установками. Рассмотрены вопросы защитных свойств изоляционных покрытий в различных почвенно-климатических условиях, вопросы прогнозирования срока службы изоляционных покр1атий. Приведены расчет катодной защиты трубопроводов и резервуаров и сведения об изысканиях и электрических измерениях. [c.2]

    Поскольку трубопровод обычно выполняется из стальных труб и прп контакте с почвенным электролитом имеет собственный электрохимический (естественный) потенциал, катодная защита трубопровода может быть осуществлена с помощью гальванических анодов (протекторов), имеющих электрохимический потенциал более отрицательный, чем электрохимический потенциал т])убопровода. [c.160]

    Для катодной защиты трубопроводов применяют различные средства протекторы разных типоразмеров, катодные станции нескольких разновидностей, отличающиеся как по мопщости, так и по источнику постоянного тока, анодные заземления с электродами разных типоразмеров и др. [c.201]

    Поляризованные протекторные установки (рис. 8.2, г) представляют собой обычную систему протекторов, присоединяемых к защищаемому подземному сооружению через полупроводниковые вентильные элементы. Полпризованные протекторные установки наиболее рационально использовать для защиты подземных сооружений блуждающими переменными токами. Они дают возможность через протектор снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них, благодаря наличию в цепи вентильного элемента, катодный период, который обеспечивает их автоматическую катодную защиту. [c.174]

    Из рис. 188 видно, что при катодной поляризации электрода скорость выделения водорода возрастает, а скорость растворения металла уменьшается. Таким образом, при помощи катодной поляризации можно защитить металл от коррозии. Это явление называется про-тект-эффвктом и широко применяется при защите металлических конструкций. Катодная защита осуществляется или при помощи внешнего источника тока, или при помощи соединения защищаемого металла с другим металлом (протектором), имеющим более отрицательное значение равновесного потенциала. Часто для этой цели используют цинк и магний. [c.376]

    Электрохимическая защита. Этот метод защиты основан на тормо-н ии анодных или катодных реакций коррозионного процесса. (Электрохимическая защита осуществляется присоединением к защ1р щаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока Наиболее применима электрохимическая защита в коррозионных средах с хорошей электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.221]

    Для устранения или уменьшения щелевой коррозии можно использовать катодную защиту, г.е. поляризовать конструкшю от внешнего тока или контактированием с анодами - протекторами. Так, в щели нержавеющей хромоникелевой стали марок 18-10 после выдержки в морской [c.206]


Смотреть страницы где упоминается термин Протекторы и катодная защита: [c.585]    [c.50]    [c.392]    [c.196]    [c.204]    [c.4]    [c.5]    [c.222]    [c.204]    [c.99]    [c.257]    [c.425]    [c.478]   
Смотреть главы в:

Коррозия и защита от коррозии -> Протекторы и катодная защита




ПОИСК





Смотрите так же термины и статьи:

Анодная защита катодными протекторами

Защита катодная

Защита катодная наложенным таком конструкции присоединения протекторов

Конструктивное оформление защиты мерника 50-ноЙ серной кислоты с катодным протектором

Протектор катодный

Протекторы

Ток катодный



© 2025 chem21.info Реклама на сайте